Convergence of Tandem Catalysis and Nanoconfinement Promotes Electroreduction of CO2 to C2 Products

被引:0
|
作者
Dai, Jiawei [1 ]
Zhu, Deyu [1 ]
Xu, You [1 ]
Zhu, Jiannan [1 ]
Liu, Xiaoling [1 ]
Xu, Guichan [1 ]
Wang, Zhengyun [1 ]
Chen, Rong [2 ]
Liu, Hongfang [1 ]
Li, Guangfang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China
[2] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
electroreduction CO2; nanoconfinement; tandem catalysis; Cu2O@Ag nanoshell; *CO enrichment; multicarbon; ELECTROCHEMICAL REDUCTION; PH-DEPENDENCE; SELECTIVITY; INSIGHTS;
D O I
10.1021/acsami.4c17083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An efficient electrocatalytic conversion of CO2 into valuable multicarbon (C2+) products requires enhanced C-C coupling of C1 intermediates. Herein, we combine a tandem effect with a confinement strategy to construct a hollow Cu2O@Ag nanoshell electrocatalyst with a well-defined porous structure to improve the *CO intermediate coverage on the catalyst surface. In CO2 electroreduction, in situ Raman spectroscopy shows that the introduction of Ag can not only promote the CO intermediate production but also improve the stability of Cu+ to capture the *CO intermediate due to a CO-tandem effect, and the fine-tuned hollowness degree and pore size of Cu2O@Ag create a spatially confined microenvironment for trapping CO2 as well as the enrichment of CO, which greatly facilitate subsequent C-C coupling for C2+ product. The optimized Cu2O@Ag-45 with a specific nanoconfinement exhibits an enhanced ethylene (C2H4) production under the wide potential range from -0.4 to -1.2 V (vs RHE), and a Faradaic efficiency of 55.4% for C2+ products could be achieved at -1.2 V (vs RHE). This study highlights a promising strategy for the electrochemical reduction of CO2 to C2+ products on efficient C-C coupling catalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The enhanced local CO concentration for efficient CO2 electrolysis towards C2 products on tandem active sites
    He, Anbang
    Yang, Yong
    Zhang, Qiang
    Yang, Ming
    Zou, Qian
    Du, Jun
    Tao, Changyuan
    Liu, Zuohua
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [22] The enhanced local CO concentration for efficient CO2 electrolysis towards C2 products on tandem active sites
    He, Anbang
    Yang, Yong
    Zhang, Qiang
    Yang, Ming
    Zou, Qian
    Du, Jun
    Tao, Changyuan
    Liu, Zuohua
    Chemical Engineering Journal, 2022, 450
  • [23] Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper
    Chen, Chunjun
    Sun, Xiaofu
    Lu, Lu
    Yang, Dexin
    Ma, Jun
    Zhu, Qinggong
    Qian, Qingli
    Han, Buxing
    GREEN CHEMISTRY, 2018, 20 (20) : 4579 - 4583
  • [24] Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: Synergistic catalysis or tandem catalysis?
    Luo, Yan
    Yang, Jun
    Qin, Jundi
    Miao, Kanghua
    Xiang, Dong
    Kuchkaev, Aidar
    Yakhvarov, Dmitry
    Hu, Chuansheng
    Kang, Xiongwu
    JOURNAL OF ENERGY CHEMISTRY, 2024, 92 : 499 - 507
  • [25] Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products
    Su, Xingsong
    Sun, Yuanmiao
    Jin, Lei
    Zhang, Lei
    Yang, Yue
    Kerns, Peter
    Liu, Ben
    Li, Shuzhou
    He, Jie
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2020, 269
  • [26] Selective Electroreduction of CO2 to C2 Products over Cu3N-Derived Cu Nanowires
    Mi, Yuying
    Shen, Sibo
    Peng, Xianyun
    Bao, Haihong
    Liu, Xijun
    Luo, Jun
    CHEMELECTROCHEM, 2019, 6 (09) : 2393 - 2397
  • [27] Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: Synergistic catalysis or tandem catalysis?
    Yan Luo
    Jun Yang
    Jundi Qin
    Kanghua Miao
    Dong Xiang
    Aidar Kuchkaev
    Dmitry Yakhvarov
    Chuansheng Hu
    Xiongwu Kang
    Journal of Energy Chemistry , 2024, (05) : 499 - 507
  • [28] Cu2O-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO2 to C2 Products
    Niu, Di
    Wei, Cong
    Lu, Zheng
    Fang, Yanyan
    Liu, Bo
    Sun, Da
    Hao, Xiaobin
    Pan, Hongge
    Wang, Gongming
    MOLECULES, 2021, 26 (08):
  • [29] Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy
    Chen, Lulu
    Li, Minhan
    Zhang, Jia-Nan
    NANO RESEARCH, 2024, 17 (09) : 7880 - 7899
  • [30] Nanoconfinement and tandem catalysis over yolk-shell catalysts towards electrochemical reduction of CO2 to multi-carbon products
    Sun, Lidan
    Zheng, Xiaolin
    Li, Yuanrui
    Lin, Mianrui
    Zeng, Xiuli
    Yu, Jun
    Song, Zhongxin
    Zhang, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 687 : 733 - 741