Overcoming Biological Barriers in Cancer Therapy: Cell Membrane-Based Nanocarrier Strategies for Precision Delivery

被引:1
作者
Li, Yuping [1 ,2 ]
Sun, Hongfang [1 ]
Cao, Dianchao [1 ]
Guo, Yang [1 ]
Wu, Dongyang [1 ]
Yang, Menghao [1 ]
Wang, Hongming [2 ]
Shao, Xiaowei [2 ]
Li, Youjie [1 ]
Liang, Yan [1 ]
机构
[1] Binzhou Med Univ, Sch Basic Med, Dept Biochem & Mol Biol, Yantai 264003, Shandong, Peoples R China
[2] Binzhou Inspect & Testing Ctr, Binzhou 256600, Shandong, Peoples R China
关键词
cell membrane-mimetic; biological barriers; nanodelivery system; delivery efficiency; anti-tumor; MESENCHYMAL STEM-CELLS; CIRCULATING TUMOR-CELLS; FUSOBACTERIUM-NUCLEATUM; DRUG-DELIVERY; EXTRACELLULAR-MATRIX; NANOPARTICLES; SIZE; PENETRATION; CLEARANCE; PAIN;
D O I
10.2147/IJN.S497510
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Given the unique capabilities of natural cell membranes, such as prolonged blood circulation and homotypic targeting, extensive research has been devoted to developing cell membrane-inspired nanocarriers for cancer therapy, while most focused on overcoming one or a few biological barriers. In fact, the journey of nanosystems from systemic circulation to tumor cells involves intricate processes, encompassing blood circulation, tissue accumulation, cancer cell targeting, endocytosis, endosomal escape, intracellular trafficking to target sites, and therapeutic action, all of which pose limitations to their clinical translation. This underscores the necessity of meticulously considering these biological barriers in the design of cell membrane-mimetic nanocarriers. In this review, we delineate the functions and applications of diverse types of cell membranes in nanocarrier systems. We elaborate on the biological hurdles encountered at each stage of the biomimetic nanoparticle's odyssey to the target, and comprehensively discuss the obstacles imposed by the tumor microenvironment for precise delivery. Subsequently, we systematically review contemporary cell membranebased strategies aimed at overcoming these multi-level biological barriers, encompassing hybrid cell membrane (HCM) camouflage, physicochemical properties, and so on. Finally, we outline potential strategies to accelerate the development of cell membrane-inspired precision nanocarriers and discuss the challenges that must be addressed to enhance their clinical applicability. This review serves as a guide for refining the study of cell membrane-mimetic nanosystems in surmounting in vivo delivery barriers, thereby significantly contributing to advancing the development and application of cell membrane-based nanoparticles in cancer delivery.
引用
收藏
页码:3113 / 3145
页数:33
相关论文
共 191 条
[1]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[2]   Molecular mechanisms of lymphangiogenesis in health and disease [J].
Alitalo, K ;
Carmeliet, P .
CANCER CELL, 2002, 1 (03) :219-227
[3]   Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding [J].
Aller, Stephen G. ;
Yu, Jodie ;
Ward, Andrew ;
Weng, Yue ;
Chittaboina, Srinivas ;
Zhuo, Rupeng ;
Harrell, Patina M. ;
Trinh, Yenphuong T. ;
Zhang, Qinghai ;
Urbatsch, Ina L. ;
Chang, Geoffrey .
SCIENCE, 2009, 323 (5922) :1718-1722
[4]   Biomimetic camouflage delivery strategies for cancer therapy [J].
Asrorov, Akmal M. ;
Gu, Zeyun ;
Li, Feng ;
Liu, Lingyun ;
Huang, Yongzhuo .
NANOSCALE, 2021, 13 (19) :8693-8706
[5]   Stress Worsens Endothelial Function and Ischemic Stroke via Glucocorticoids [J].
Balkaya, Mustafa ;
Prinz, Vincent ;
Custodis, Florian ;
Gertz, Karen ;
Kronenberg, Golo ;
Kroeber, Jan ;
Fink, Klaus ;
Plehm, Ralph ;
Gass, Peter ;
Laufs, Ulrich ;
Endres, Matthias .
STROKE, 2011, 42 (11) :3258-U539
[6]   Endocytic mechanisms for targeted drug delivery [J].
Bareford, Lisa A. ;
Swaan, Peter W. .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (08) :748-758
[7]   Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes [J].
Barreiro, O ;
Yáñez-Mó, M ;
Serrador, JM ;
Montoya, MC ;
Vicente-Manzanares, M ;
Tejedor, R ;
Furthmayr, H ;
Sánchez-Madrid, F .
JOURNAL OF CELL BIOLOGY, 2002, 157 (07) :1233-1245
[8]   How rapid advances in imaging are defining the future of precision radiation oncology [J].
Beaton, Laura ;
Bandula, Steve ;
Gaze, Mark N. ;
Sharma, Ricky A. .
BRITISH JOURNAL OF CANCER, 2019, 120 (08) :779-790
[9]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[10]   Large-Scale Expansion of Human Mesenchymal Stem Cells [J].
Bin Hassan, Muhammad Najib Fathi ;
Yazid, Muhammad Dain ;
Yunus, Mohd Heikal Mohd ;
Chowdhury, Shiplu Roy ;
Lokanathan, Yogeswaran ;
Idrus, Ruszymah Bt Hj ;
Ng, Angela Min Hwei ;
Law, Jia Xian .
STEM CELLS INTERNATIONAL, 2020, 2020