Smart Trap Design with Machine Learning and Embedded System Structure

被引:0
作者
Atmaca, Eren [1 ]
Hoke, Berkan [1 ]
Unsalan, Cem [1 ]
机构
[1] Marmara Univ, Muhendislik Fak, Elekt & Elekt Muh Bolumu, Istanbul, Turkey
来源
2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2022年
关键词
Smart trap; Mediterranean fruit fly; embedded system; deep learning;
D O I
10.1109/SIU55565.2022.9864772
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is very important to fight the Mediterranean fruit fly pest in orchards in our country. If this fight is not given, serious economic losses occur. Traps are currently being set up on trees to detect pests. It is important that these traps are checked by farmers at regular intervals in terms of pesticide applications of fruits. This process increases the workload of farmers. Therefore, a smart trap design that automatically detects the number of Mediterranean fruit flies is proposed in this study. The smart trap is implemented as an embedded system using the STM 32F746GDISCOVERY development board with an Arm Cortex M7 processor on it. Via the proposed system, quantitative data can be obtained about the population of Mediterranean fruit flies in the determined region. Machine learning is performed on the proposed embedded system. Therefore, a deep learning-based structure that can work on the embedded system has been designed. Obtained preliminary results indicate that the proposed system can be used for Mediterranean fruit fly detection and automatic determination of its number in a given region.
引用
收藏
页数:4
相关论文
共 11 条
[1]  
Ashraf K., 2016, SQUEEZENET ALEXNET L
[2]   Automatic Detection and Monitoring of Insect Pests-A Review [J].
Cardim Ferreira Lima, Matheus ;
Damascena de Almeida Leandro, Maria Elisa ;
Valero, Constantino ;
Pereira Coronel, Luis Carlos ;
Goncalves Bazzo, Clara Oliva .
AGRICULTURE-BASEL, 2020, 10 (05)
[3]  
Howard A. G., 2017, arXiv
[4]   Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies [J].
Lopez, Otoniel ;
Rach, Miguel Martinez ;
Migallon, Hector ;
Malumbres, Manuel P. ;
Bonastre, Alberto ;
Serrano, Juan J. .
SENSORS, 2012, 12 (11) :15801-15819
[5]   A survey on image-based insect classification [J].
Martineau, Chloe ;
Conte, Donatello ;
Raveaux, Romain ;
Arnault, Ingrid ;
Munier, Damien ;
Venturini, Gilles .
PATTERN RECOGNITION, 2017, 65 :273-284
[6]   Deep Learning applied to the Identification of Fruit Fly in Intelligent Traps [J].
Martins, Valter A. M. ;
Freitas, Lucas C. ;
de Aguiar, Marilton S. ;
de Brisolara, Lisane B. ;
Ferreira Jr, Paulo R. .
2019 IX BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC), 2019,
[7]   Insect pest monitoring with camera-equipped traps: strengths and limitations [J].
Preti, Michele ;
Verheggen, Francois ;
Angeli, Sergio .
JOURNAL OF PEST SCIENCE, 2021, 94 (02) :203-217
[8]  
Segalla A, 2020, PROCEEDINGS OF 2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (METROAGRIFOR), P7, DOI [10.1109/MetroAgriFor50201.2020.9277657, 10.1109/metroagrifor50201.2020.9277657]
[9]   Electronic traps for detection and population monitoring of adult fruit flies (Diptera: Tephritidae) [J].
Shaked, B. ;
Amore, A. ;
Ioannou, C. ;
Valdes, F. ;
Alorda, B. ;
Papanastasiou, S. ;
Goldshtein, E. ;
Shenderey, C. ;
Leza, M. ;
Pontikakos, C. ;
Perdikis, D. ;
Tsiligiridis, T. ;
Tabilio, M. R. ;
Sciarretta, A. ;
Barcelo, C. ;
Athanassiou, C. ;
Miranda, M. A. ;
Alchanatis, V. ;
Papadopoulos, N. ;
Nestel, D. .
JOURNAL OF APPLIED ENTOMOLOGY, 2018, 142 (1-2) :43-51
[10]  
Tirelli P, 2011, IEEE IMTC P, P1192