共 50 条
Improving the activity and long-term durability of the Ni/Al2O3 catalyst in the low-temperature steam reforming of highly concentrated volatile organic compounds
被引:0
|作者:
Zulqarnain
[1
,2
]
Kim, Soohyun
[1
]
Chun, Dong Hyuk
[1
]
Yoo, Jiho
[1
]
Kim, Sangdo
[1
]
Im, Hyuk
[1
]
Choi, Hokyung
[1
]
Lim, Jeonghwan
[1
]
机构:
[1] Korea Inst Energy Res, Clean Air Res Lab, Daejeon 305343, South Korea
[2] Univ Sci & Technol UST, Dept Energy Engn, Daejeon 34113, South Korea
关键词:
Coking;
Catalyst synthesis;
H-2;
production;
VOCs;
Steam reforming;
Stability;
HYDROGEN-PRODUCTION;
BIOMASS TAR;
MODEL-COMPOUND;
SIMULATED-TOLUENE;
NI;
GAS;
METHANE;
CO2;
REMOVAL;
ETHANOL;
D O I:
10.1016/j.ecmx.2024.100819
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Highly concentrated volatile organic compounds (VOCs), a precursor of PM2.5, are released from car-painting booths, laundries, printing presses, and refineries. H2, as an eco-friendly substitute to fossil fuels, can be produced by the steam reforming of highly concentrated VOCs. However, catalyst deactivation caused by coke accumulation is a serious issue in relation to steam-reforming reactions. A series of 15Ni-M/Al2O3 (M = 5 wt% of Ce, La, Sm, Fe, Tb, Ca, Mn, Sr, V, Hf, and Cs) has been synthesized to investigate their catalytic activity during the steam reforming of the highly concentrated toluene, xylene, and butyl acetate (6000-7000 ppm) mixture released from car-painting booths. The influence of the reaction conditions is studied at T = 400-600 degrees C, steamto-carbon ratio (S/C) = 3-15, and gas-hourly-space-velocity (GHSV) = 15,000-40,000 h- 1. NiCe/Al2O3 shows the optimal H2 yield and VOC conversion of 91 % and 99 %, respectively, at 550 degrees C, an S/C of 6, and a GHSV of 15,000 h- 1 among all the prepared catalysts. Under the same reforming conditions, the unpromoted Ni/Al2O3 catalyst exhibits an H2 yield and VOC conversion of 73 % and 75 %, respectively. The NiCe/Al2O3 catalyst shows a stable H2 yield and VOC conversion over a 100 h reaction period, with a maximum coking rate of 1.80 mgc gcat 1h- 1. The superior catalytic performance and durability of the NiCe/Al2O3 catalyst are associated with its low acidity, strong metal-support interaction, high metal dispersion with a small Ni crystallite size, high Ni0 (77 %) and Ce+3 (80 %) content, and abundant oxygen vacancies (91.4 %).
引用
收藏
页数:18
相关论文