Unsupervised Bayesian Surprise Detection in Spatial Audio with Convolutional Variational Autoencoder and LSTM Model

被引:0
|
作者
Khah, Arman Nik [1 ]
Htun, Chitsein [1 ]
Prakash, Ravi [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
来源
PROCEEDINGS OF THE 2024 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE MEDIA EXPERIENCES WORKSHOPS, IMXW 2024 | 2024年
关键词
360 degrees video; spatial audio; visual attention; Bayesian surprise; unsupervised learning; VAE-LSTM; AMBISONICS;
D O I
10.1145/3672406.3672422
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Understanding user visual attention (VA) is crucial for Field-of-View (FoV) prediction and resultant bandwidth optimization for 360 degrees video streaming. The influence of spatial audio on VA has been largely overlooked. Traditional methods, using saliency, characterize important stimuli as statistical outliers [4] but fail to capture the Temporal Evolution of Attention (TEA), where initially salient stimuli become routine and less attention-grabbing due to continual exposure [2, 20]. This paper introduces a novel unsupervised deep learning approach using a Convolutional Variational Autoencoder and Long Short-Term Memory (CVAE-LSTM) model to detect Bayesian surprise [2] in spatial audio streams, considering factors such as time, context, and user expectations. Our findings highlight the importance of temporal context in determining the surprisal value of audio events and the selective nature of sensory processing and attention in complex environments.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 32 条
  • [11] Fall Detection of the Elderly Using Denoising LSTM-Based Convolutional Variant Autoencoder
    Yi, Myung-Kyu
    Han, KyungHyun
    Hwang, Seong Oun
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 18556 - 18567
  • [12] Unsupervised Anomaly Video Detection via a Double-Flow ConvLSTM Variational Autoencoder
    Wang, Lin
    Tan, Haishu
    Zhou, Fuqiang
    Zuo, Wangxia
    Sun, Pengfei
    IEEE ACCESS, 2022, 10 : 44278 - 44289
  • [13] 3D CAD model retrieval based on sketch and unsupervised variational autoencoder
    Qin, Feiwei
    Qiu, Shi
    Gao, Shuming
    Bai, Jing
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [14] Anomaly Detection in Robotic Welds - Investigation of LSTM Autoencoder Model Performance
    Skar, Eirik Magnus
    Kloumann, Jon-Erick
    Robbersmyr, Kjell G.
    Lovasen, Torfinn
    2023 11TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA, 2023, : 265 - 270
  • [15] TOWARD UNSUPERVISED 3D POINT CLOUD ANOMALY DETECTION USING VARIATIONAL AUTOENCODER
    Masuda, Mana
    Hachiuma, Ryo
    Fujii, Ryo
    Saito, Hideo
    Sekikawa, Yusuke
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3118 - 3122
  • [16] Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder
    Chen, Kunjin
    Hu, Jun
    He, Jinliang
    IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (03) : 1748 - 1758
  • [18] Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification
    Mansour, Romany F.
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Gupta, Deepak
    Castillo, Oscar
    Kumar, Sachin
    PATTERN RECOGNITION LETTERS, 2021, 151 : 267 - 274
  • [19] An Unsupervised Approach to Wind Turbine Blade Icing Detection Based on Beta Variational Graph Attention Autoencoder
    Wang, Lei
    He, Yigang
    Shao, Kaixuan
    Xing, Zhikai
    Zhou, Yazhong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [20] StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder
    Chatterjee, Soumick
    Sciarra, Alessandro
    Duennwald, Max
    Tummala, Pavan
    Agrawal, Shubham Kumar
    Jauhari, Aishwarya
    Kalra, Aman
    Oeltze-Jafra, Steffen
    Speck, Oliver
    Nuernberger, Andreas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149