Unsupervised Bayesian Surprise Detection in Spatial Audio with Convolutional Variational Autoencoder and LSTM Model

被引:0
|
作者
Khah, Arman Nik [1 ]
Htun, Chitsein [1 ]
Prakash, Ravi [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
来源
PROCEEDINGS OF THE 2024 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE MEDIA EXPERIENCES WORKSHOPS, IMXW 2024 | 2024年
关键词
360 degrees video; spatial audio; visual attention; Bayesian surprise; unsupervised learning; VAE-LSTM; AMBISONICS;
D O I
10.1145/3672406.3672422
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Understanding user visual attention (VA) is crucial for Field-of-View (FoV) prediction and resultant bandwidth optimization for 360 degrees video streaming. The influence of spatial audio on VA has been largely overlooked. Traditional methods, using saliency, characterize important stimuli as statistical outliers [4] but fail to capture the Temporal Evolution of Attention (TEA), where initially salient stimuli become routine and less attention-grabbing due to continual exposure [2, 20]. This paper introduces a novel unsupervised deep learning approach using a Convolutional Variational Autoencoder and Long Short-Term Memory (CVAE-LSTM) model to detect Bayesian surprise [2] in spatial audio streams, considering factors such as time, context, and user expectations. Our findings highlight the importance of temporal context in determining the surprisal value of audio events and the selective nature of sensory processing and attention in complex environments.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 32 条
  • [1] Anomaly Detection Using LSTM-Based Variational Autoencoder in Unsupervised Data in Power Grid
    Guha, Dibyajyoti
    Chatterjee, Rajdeep
    Sikdar, Biplab
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 4313 - 4323
  • [2] Unsupervised change detection using hierarchical convolutional autoencoder
    Bergamasco, Luca
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [3] Spam review detection using LSTM autoencoder: an unsupervised approach
    Sunil Saumya
    Jyoti Prakash Singh
    Electronic Commerce Research, 2022, 22 : 113 - 133
  • [4] Spam review detection using LSTM autoencoder: an unsupervised approach
    Saumya, Sunil
    Singh, Jyoti Prakash
    ELECTRONIC COMMERCE RESEARCH, 2022, 22 (01) : 113 - 133
  • [5] Unsupervised varistor surface defect detection based on variational autoencoder
    Tang S.
    Chen M.
    Wang H.
    Zhang X.
    Zhang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (05): : 1337 - 1351
  • [6] Detection of Freezing of Gait Using Unsupervised Convolutional Denoising Autoencoder
    Noor, Mohd Halim Mohd
    Nazir, Amril
    Ab Wahab, Mohd Nadhir
    Ling, Jodene Ooi Yen
    IEEE ACCESS, 2021, 9 : 115700 - 115709
  • [7] Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features
    Bergamasco, Luca
    Saha, Sudipan
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Unsupervised defect detection for solar photovoltaic cells based on convolutional autoencoder
    Zhang, Yufei
    Zhang, Xu
    Tu, Dawei
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [9] Unsupervised change-detection based on Convolutional-autoencoder Feature Extraction
    Bergamasco, Luca
    Saha, Sudipan
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [10] Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder (vol 8, pg 47072, 2020)
    Chen, Tingting
    Liu, Xueping
    Xia, Bizhong
    Wang, Wei
    Lai, Yongzhi
    IEEE ACCESS, 2020, 8 : 117062 - 117062