Antiferromagnetic skyrmion-based energy-efficient leaky integrate and fire neuron device

被引:0
|
作者
Bindal, Namita [1 ,2 ]
Rajib, Md Mahadi [4 ]
Raj, Ravish Kumar [2 ,3 ]
Atulasimha, Jayasimha [4 ,5 ]
Kaushik, Brajesh Kumar [2 ]
机构
[1] MVJ Coll Engn, Dept Elect & Commun Engn, Bangalore 560037, India
[2] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee 247667, Uttarakhand, India
[3] Aarhus Univ, Dept Elect & Comp Engn, Elect & Photon Sect, DK-8000 Aarhus N, Denmark
[4] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA 23284 USA
[5] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
antiferromagnets; leaky-integrate-fire; neuron; spin-orbit-torque; thermal gradient; LATTICE; STATES;
D O I
10.1088/1361-6528/adb8c1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of energy-efficient neuromorphic hardware using spintronic devices based on antiferromagnetic (AFM) skyrmion motion on nanotracks has gained considerable interest. Owing to their properties such as robustness against external magnetic fields, negligible stray fields, and zero net topological charge, AFM skyrmions follow straight trajectories that prevent their annihilation at nanoscale racetrack edges. This makes the AFM skyrmions a more favorable candidate than the ferromagnetic (FM) skyrmions for future spintronic applications. This work proposes an AFM skyrmion-based neuron device exhibiting the leaky-integrate-fire (LIF) functionality by exploiting either a thermal gradient or a perpendicular magnetic anisotropy (PMA) gradient in the nanotrack for leaky behavior by moving the skyrmion in the hotter region or the region with lower PMA, respectively, to minimize the system energy. Furthermore, it is shown that the AFM skyrmion couples efficiently to the soft FM layer of a magnetic tunnel junction, enabling efficient read-out of the skyrmion. The maximum change of 9.2% in tunnel magnetoresistance is estimated while detecting the AFM skyrmion. Moreover, the proposed neuron device has an energy dissipation of 4.32 fJ per LIF operation, thus paving the way for developing energy-efficient devices in AFM spintronics for neuromorphic computing.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Bilayer Synthetic Antiferromagnetic Skyrmion-Based Muller C-Element
    Kaur, Jasmine
    Saurabh, Sneh
    Sahay, Shubham
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (01) : 516 - 523
  • [32] Nanolayered NbO2-Based Dynamic Memristor for Leaky Integrate and Fire Neuron
    Wang, Yongzhou
    Wang, Wei
    Xu, Hui
    Liu, Sen
    Cao, Rongrong
    Sun, Yi
    Tong, Peiwen
    Song, Bing
    Li, Qingjiang
    ACS APPLIED NANO MATERIALS, 2024, 7 (09) : 10679 - 10689
  • [33] Optimization of Leaky Integrate-and-Fire Neuron Circuits Based on Nanoporous Graphene Memristors
    Mohanan, Kannan Udaya
    Sattari-Esfahlan, Seyed Mehdi
    Cho, Eou-Sik
    Kim, Chang-Hyun
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 88 - 95
  • [34] Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
    Kornijcuk, Vladimir
    Lim, Hyungkwang
    Seok, Jun Yeong
    Kim, Guhyun
    Kim, Seong Keun
    Kim, Inho
    Choi, Byung Joon
    Jeong, Doo Seok
    FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [35] Proposal for a Leaky-Integrate-Fire Spiking Neuron Based on Magnetoelectric Switching of Ferromagnets
    Jaiswal, Akhilesh
    Roy, Sourjya
    Srinivasan, Gopalakrishnan
    Roy, Kaushik
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (04) : 1818 - 1824
  • [36] A Memristor-Based Leaky Integrate-and-Fire Artificial Neuron With Tunable Performance
    Lin, Jiaming
    Ye, Weixi
    Zhang, Xianghong
    Lian, Qiming
    Wu, Shengyuan
    Guo, Tailiang
    Chen, Huipeng
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (08) : 1231 - 1234
  • [37] High-Performance and Energy-Efficient Leaky Integrate-and-Fire Neuron and Spike Timing-Dependent Plasticity Circuits in 7nm FinFET Technology
    Jooq, Mohammad Khaleqi Qaleh
    Azghadi, Mostafa Rahimi
    Behbahani, Fereshteh
    Al-Shidaifat, Alaaddin
    Song, Hanjung
    IEEE ACCESS, 2023, 11 : 133451 - 133459
  • [38] An energy efficient leaky integrate and fire neuron using Ge-source TFET for spiking neural network: simulation analysis
    Tiwari, Shreyas
    Saha, Rajesh
    Varma, Tarun
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [39] L-Shaped Double Gate Bipolar Impact Ionization MOSFET Based Energy Efficient Leaky Integrate and Fire Neuron for Spiking Neural Network
    Sarkhel, Saheli
    Kumari, Tripty
    Saha, Priyanka
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2023, 22 : 673 - 678
  • [40] On a Generalized Leaky Integrate-and-Fire Model for Single Neuron Activity
    Buonocore, Aniello
    Caputo, Luigia
    Pirozzi, Enrica
    Ricciardi, Luigi M.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2009, 2009, 5717 : 152 - +