Lossless Compression Framework Using Lossy Prior for High-Resolution Remote Sensing Images

被引:0
|
作者
Gu, Enjia [1 ]
Zhang, Yongshan [1 ]
Wang, Xinxin [2 ]
Jiang, Xinwei [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Image coding; Remote sensing; Image segmentation; Arithmetic; Transform coding; Transformers; Redundancy; Accuracy; Probability distribution; Hyperspectral imaging; Arithmetic coding; checkerboard segmentation; discrete probability prediction; JPEG XL resampling; lossless remote sensing image compression;
D O I
10.1109/JSTARS.2025.3550721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lossless compression of remote sensing images is critically important for minimizing storage requirements while preserving the complete integrity of the data. The main challenge in lossless compression lies in striking a good balance between reasonable compression durations and high compression ratios. In this article, we introduce an innovative lossless compression framework that uniquely utilizes lossy compression data as prior knowledge to enhance the compression process. Our framework employs a checkerboard segmentation technique to divides the original remote sensing image into various subimages. The main diagonal subimages are compressed using a traditional lossy method to obtain prior knowledge for facilitating the compression of all subimages. These subimages are then subjected to lossless compression using our newly developed lossy prior probability prediction network (LP3Net) and arithmetic coding in a specific order. The proposed LP3Net is an advanced network architecture, consisting of an image preprocessing module, a channel enhancement module, and a pixel probability transformer module, to learn the discrete probability distribution of each pixel within every subimage, enhancing the accuracy and efficiency of the compression process. Experiments on high-resolution remote sensing image datasets demonstrate the effectiveness and efficiency of the proposed LP3Net and lossless compression framework, achieving a minimum of 4.57% improvement over traditional compression methods and 1.86% improvement over deep learning-based compression methods.
引用
收藏
页码:8590 / 8601
页数:12
相关论文
共 50 条
  • [41] EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Li
    Dou, Xin
    Peng, Jian
    Li, Wenbo
    Sun, Bingyu
    Li, Haifeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [42] A study of various classification techniques used for very high-resolution remote sensing [VHRRS] images
    Vijayalakshmi, S.
    Kumar, Magesh
    Arun, M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2947 - 2951
  • [43] Visual Saliency Detection in High-Resolution Remote Sensing Images Using Object-Oriented Random Walk Model
    Ding, Lin
    Wang, Xing
    Li, Deren
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4698 - 4707
  • [44] IMPROVED COMPRESSION RATIO PREDICTION IN DCT-BASED LOSSY COMPRESSION OF REMOTE SENSING IMAGES
    Zemliachenko, Alexander N.
    Abramov, Sergey K.
    Lukin, Vladimir V.
    Vozel, Benoit
    Chehdi, Kacem
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6966 - 6969
  • [45] A CONCEPTUAL FRAMEWORK FOR CHANGE DETECTION IN VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Bruzzone, Lorenzo
    Bovolo, Francesca
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2555 - 2558
  • [46] Deep Learning for Building Extraction from High-Resolution Remote Sensing Images
    Norelyaqine, Abderrahim
    Saadane, Abderrahim
    ADVANCED TECHNOLOGIES FOR HUMANITY, 2022, 110 : 116 - 128
  • [47] FSegNet: A Semantic Segmentation Network for High-Resolution Remote Sensing Images That Balances Efficiency and Performance
    Luo, Wen
    Deng, Fei
    Jiang, Peifan
    Dong, Xiujun
    Zhang, Gulan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [48] See, Perceive, and Answer: A Unified Benchmark for High-Resolution Postdisaster Evaluation in Remote Sensing Images
    Zhao, Danpei
    Lu, Jiankai
    Yuan, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [49] HCANet: A Hierarchical Context Aggregation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Bai, Haiwei
    Cheng, Jian
    Huang, Xia
    Liu, Siyu
    Deng, Changjian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] Object detection of high-resolution remote sensing images by neural architecture search
    Yang, Jun
    Han, Peng-Fei
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (09): : 2646 - 2657