Lossless Compression Framework Using Lossy Prior for High-Resolution Remote Sensing Images

被引:0
|
作者
Gu, Enjia [1 ]
Zhang, Yongshan [1 ]
Wang, Xinxin [2 ]
Jiang, Xinwei [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Image coding; Remote sensing; Image segmentation; Arithmetic; Transform coding; Transformers; Redundancy; Accuracy; Probability distribution; Hyperspectral imaging; Arithmetic coding; checkerboard segmentation; discrete probability prediction; JPEG XL resampling; lossless remote sensing image compression;
D O I
10.1109/JSTARS.2025.3550721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lossless compression of remote sensing images is critically important for minimizing storage requirements while preserving the complete integrity of the data. The main challenge in lossless compression lies in striking a good balance between reasonable compression durations and high compression ratios. In this article, we introduce an innovative lossless compression framework that uniquely utilizes lossy compression data as prior knowledge to enhance the compression process. Our framework employs a checkerboard segmentation technique to divides the original remote sensing image into various subimages. The main diagonal subimages are compressed using a traditional lossy method to obtain prior knowledge for facilitating the compression of all subimages. These subimages are then subjected to lossless compression using our newly developed lossy prior probability prediction network (LP3Net) and arithmetic coding in a specific order. The proposed LP3Net is an advanced network architecture, consisting of an image preprocessing module, a channel enhancement module, and a pixel probability transformer module, to learn the discrete probability distribution of each pixel within every subimage, enhancing the accuracy and efficiency of the compression process. Experiments on high-resolution remote sensing image datasets demonstrate the effectiveness and efficiency of the proposed LP3Net and lossless compression framework, achieving a minimum of 4.57% improvement over traditional compression methods and 1.86% improvement over deep learning-based compression methods.
引用
收藏
页码:8590 / 8601
页数:12
相关论文
共 50 条
  • [31] Fast and robust detection of oil palm trees using high-resolution remote sensing images
    Xia, Maocai
    Li, Weijia
    Fu, Haohuan
    Yu, Le
    Dong, Runmin
    Zheng, Juepeng
    AUTOMATIC TARGET RECOGNITION XXIX, 2019, 10988
  • [32] Stripe Noise Detection of High-Resolution Remote Sensing Images Using Deep Learning Method
    Li, Binbo
    Zhou, Ying
    Xie, Donghai
    Zheng, Lijuan
    Wu, Yu
    Yue, Jiabao
    Jiang, Shaowei
    REMOTE SENSING, 2022, 14 (04)
  • [33] Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images
    Shao, Zhenfeng
    Cheng, Tao
    Fu, Huyan
    Li, Deren
    Huang, Xiao
    REMOTE SENSING, 2023, 15 (10)
  • [34] Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Ding, Lei
    Lin, Dong
    Lin, Shaofu
    Zhang, Jing
    Cui, Xiaojie
    Wang, Yuebin
    Tang, Hao
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] A Self-Supervised Learning Framework for Road Centerline Extraction From High-Resolution Remote Sensing Images
    Guo, Qing
    Wang, Zhipan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4451 - 4461
  • [36] Rotation-Aware Building Instance Segmentation From High-Resolution Remote Sensing Images
    Zhao, Wufan
    Na, Jiaming
    Li, Mengmeng
    Ding, Hu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [37] Enhanced Lightweight End-to-End Semantic Segmentation for High-Resolution Remote Sensing Images
    Dong, He
    Yu, Baoguo
    Wu, Wanqing
    He, Chenglong
    IEEE ACCESS, 2022, 10 : 70947 - 70954
  • [38] Lossy Compression of Remote Sensing and Dental Images Corrupted by Spatially Correlated Noise
    Lukin, Vladimir
    Krivenko, Sergey
    Kaluzhinov, Ihor
    Krylova, Olha
    Kryvenko, Liudmyla
    INTEGRATED COMPUTER TECHNOLOGIES IN MECHANICAL ENGINEERING - 2021, 2022, 367 : 1003 - 1014
  • [39] Nonagriculturalization Detection Based on Vector Polygons and Contrastive Learning With High-Resolution Remote Sensing Images
    Zhang, Hui
    Liu, Wei
    Zhu, Changming
    Niu, Hao
    Yin, Pengcheng
    Dong, Shiling
    Wu, Jialin
    Li, Erzhu
    Zhang, Lianpeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18474 - 18488
  • [40] A Dual Branch Multiscale Stereo Matching Network for High-Resolution Satellite Remote Sensing Images
    Xu, Zhenghui
    Jiang, Yonghua
    Wang, Jingxue
    Wang, Yunming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 949 - 964