The influence of the elemental valence on the thermophysical properties of high entropy (La0.2Sm0.2Eu0.2Yb0.2Y0.2)2(Ce0.5Zr0.5)2O7 coatings for thermal barrier application

被引:0
|
作者
Ma, Yang [1 ]
Zhao, Xiaobing [1 ]
Hong, Feiyang [1 ]
Yang, Kai [1 ]
机构
[1] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213100, Jiangsu, Peoples R China
关键词
Atmospheric plasma spraying; Thermal barrier coating; High entropy ceramic; Thermophysical properties; Valence of element; LANTHANUM-CERIUM OXIDE; CONDUCTIVITY; CERAMICS; MICROSTRUCTURE; STABILITY; CE;
D O I
10.1016/j.ceramint.2024.10.057
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Commercial yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are no longer sufficient for the stringent demands in the high operating temperature and excellent thermophysical properties of the highperformance gas turbines and aviation engines. High entropy ceramics, distinguished by their superior thermophysical properties, have risen as a potential substitute for TBCs. However, the realm of atmospheric plasma spraying (APS) in the creation of these advanced TBCs remains relatively unexplored. In this work, three distinct high-entropy (La 0.2 Sm 0.2 Eu 0.2 Yb 0.2 Y 0.2 ) 2 (Ce 0.5 Zr 0.5 ) 2 O 7 coatings were developed through the meticulous alteration of spraying power. The effects of spraying power on the microstructure, valence states of constituent elements and thermophysical properties of the coatings were deeply investigated. The results indicated that all the as-sprayed coatings exhibit a defect fluorite structure. Spraying power does have a significant impact on the thermophysical properties of the coatings. With the decrease in spraying power, the thermal conductivity of the coatings shows a progressive reduction, whereas the coefficient of thermal expansion (CTE) exhibits a gradual increase. This trend is closely related to valence states of constituent elements in the coatings. The resulting coating exhibits a low thermal conductivity of 0.54 W m-1 K-1 , a high CTE of 11.22 x 10-6 K-1 and a superior phase stability at elevated temperatures.
引用
收藏
页码:51410 / 51420
页数:11
相关论文
共 50 条
  • [41] Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic
    Sang Weiwei
    Zhang Hongsong
    Chen Huahui
    Wen Bin
    Li Xinchun
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (04) : 405 - 410
  • [42] Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings
    Deng, Shuxiang
    He, Gang
    Yang, Zengchao
    Wang, Jingxia
    Li, Jiangtao
    Jiang, Lei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 107 : 259 - 265
  • [43] Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2 (Zr1-xCex)2O7 ceramics
    Zhang, Yonghe
    Xie, Min
    Wang, Zhigang
    Song, Xiwen
    Mu, Rende
    Gao, Jianquan
    Bao, Jinxiao
    Zhou, Fen
    Pan, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 958 (958)
  • [44] Calcium-magnesium-alumina-silicate(CMAS) resistant high entropy ceramic(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings
    Shuxiang Deng
    Gang He
    Zengchao Yang
    Jingxia Wang
    Jiangtao Li
    Lei Jiang
    Journal of Materials Science & Technology, 2022, 107 (12) : 259 - 265
  • [45] Flash joining of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy ceramic to 3YSZ
    Cao, Yue
    Xu, Guo-Cheng
    Shen, Ping
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 41956 - 41961
  • [46] A promising (Yb0.2Tm0.2Lu0.2Sc0.2Er0.2)2Si2O7 with excellent thermophysical properties for thermal environmental barrier coatings material
    Wei, Fushuang
    Deng, Luwei
    Liu, Yong
    Zhang, Dongxing
    Zhang, Xiaodong
    Wang, You
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 997
  • [47] High-temperature CMAS corrosion behavior and thermo-physical properties of high-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Ce2O7 thermal barrier coating
    Zhang, Haoxin
    Zhou, Huiling
    Zhao, Wanxiang
    Qiao, Yanxin
    Cai, Xiang
    Xue, Yun
    An, Yulong
    Liu, Ning
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1018
  • [48] A promising (Yb0.2Tm0.2Lu0.2Sc0.2Er0.2)2Si2O7 with excellent thermophysical properties for thermal environmental barrier coatings material
    Wei, Fushuang
    Deng, Luwei
    Liu, Yong
    Zhang, Dongxing
    Zhang, Xiaodong
    Wang, You
    Journal of Alloys and Compounds, 1600, 997
  • [49] High-entropy (La0.2Dy0.2Er0.2Yb0.2Y0.2)2Zr2O7 oxide, a potential thermal barrier coating material with photoluminescence property sensitive to pressure
    Du, Mingrun
    Xiao, Yuhan
    Yang, Xuelian
    Ma, Yu
    Han, Yingdong
    Li, Zepeng
    Wei, Tong
    Zou, Yunling
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8010 - 8016
  • [50] A novel sintering resistant Sr(Eu0.2Ho0.2Er0.2Tm0.2Yb0.2)2O4 high-entropy ceramic with superior thermophysical properties for advanced thermal barrier coatings
    Li, Kaiyun
    Huang, Shuo
    Zhang, Sheng
    Jin, Hongyun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (02)