Numerical investigation on film cooling performance and heat transfer characteristics of turbine blade squealer tips with ribs above the film holes

被引:0
|
作者
Zhou, Zuohong [1 ]
Bai, Bo [1 ]
Li, Zhigang [1 ]
Li, Jun [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Turbomachinery, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Turbine blade; Squealer tip; Film cooling; Rib; Heat transfer;
D O I
10.1016/j.ijthermalsci.2024.109653
中图分类号
O414.1 [热力学];
学科分类号
摘要
The turbine blade tip is subjected to considerable thermal stress as a consequence of the inevitable leakage flow at the tip clearance, leading to elevated temperatures. It remains a great challenge in the field of blade tip cooling design. This work provides a novel rib structure design strategy for enhancing tip cooling and thermal performance. The four squealer tips (Case 1, Case 2, Case 3 and Case 4) combined with ribs situated above the film holes are to be evaluated and compared. A numerical investigation is conducted to analyze the tip film cooling performance, as well as the tip heat transfer characteristics and flow pattern characteristics, with the inclusion of varying ribbed squealer tips. The results indicate that the ribs positioned above the film holes at the leading edge (LE) enhance the tip film cooling effectiveness, whereas the rib suited above the film holes at other part of squealer tip weaken cooling effect. The highest area-averaged film cooling effectiveness is obtained in Case 4 structure, which increases by 29.1 % compared with no rib squealer tip. The heat transfer performance is able to be improved at different ribbed squealer tips. The highest improvement of tip thermal performance occurs at the Case 1 with the ribs positioned above the film holes at the LE. The heat transfer coefficient decreased by 13.2 % in Case 1. Furthermore, the novel ribbed squealer is demonstrated to control the leakage flow and change the aerodynamic losses. The structure of Case 2 and Case 4 with the middle ribs serves to diminish the total pressure loss coefficient. Specifically, as for Case 2 and Case 4 structure, the area-averaged total pressure loss coefficient decreases by 2.1 % and 1.93 % respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Numerical and experimental investigation of turbine blade film cooling
    Berkache, Amar
    Dizene, Rabah
    HEAT AND MASS TRANSFER, 2017, 53 (12) : 3443 - 3458
  • [22] Numerical and experimental investigation of turbine blade film cooling
    Amar Berkache
    Rabah Dizene
    Heat and Mass Transfer, 2017, 53 : 3443 - 3458
  • [23] Experimental investigation of film cooling heat transfer on turbine blade leading edge
    Northwestern Polytechnical Univ, Xi'an, China
    Tuijin Jishu, 2 (64-68):
  • [24] Investigation of rail inclination effects on the aerothermal performance of turbine blade squealer tips with crown holes
    Zhou, Haimeng
    Luo, Lei
    Zeng, Fei
    Yan, Han
    Du, Wei
    Wang, Songtao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 213
  • [25] SQUEALER TIP HEAT TRANSFER WITH FILM COOLING
    Acharya, Sumanta
    Kramer, Gregory
    Moreaux, Louis
    Nakamata, Chiyuki
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 4, PTS A AND B, 2010, : 1869 - 1877
  • [26] Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip
    Yang B.
    Tan X.
    Shan Y.
    Zhang J.
    Shan, Yong (nuaasy@nuaa.edu.cn), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (36): : 1462 - 1471
  • [27] Convective heat transfer through film cooling holes of a gas turbine blade leading edge
    Terrell, Elon J.
    Mouzon, Brian D.
    Bogard, David G.
    Proceedings of the ASME Turbo Expo 2005, Vol 3 Pts A and B, 2005, : 833 - 844
  • [28] FILM COOLING AND AERODYNAMIC PERFORMANCE ON MULTI-CAVITY SQUEALER TIP OF A TURBINE BLADE
    Li, Feng
    Liu, Zhao
    Feng, Zhenping
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 5A, 2021,
  • [29] Investigation on striped heat transfer characteristics of turbine blade tips
    Lu, Shaopeng
    Gu, Huanyu
    Jiang, Hongmei
    Jin, Yun
    Wang, Yifan
    Lu, Gaoqian
    Han, Xingsi
    Zhang, Qian
    Guo, Haoyan
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [30] Unsteady Investigation on Flow and Heat Transfer Characteristics of Turbine Blade Squealer Tip
    You, Yulong
    Ding, Liang
    Tan, Zhiyong
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (03): : 836 - 844