Lie Symmetries and Solutions for a Reaction-Diffusion-Advection SIS Model with Demographic Effects

被引:0
|
作者
Naz, Rehana [1 ]
Torrisi, Mariano [2 ]
Imran, Ayesha [3 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[3] Lahore Grammar Sch, Def, 483-4 G Block,Phase 5, Lahore 54810, Pakistan
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
susceptible-infectious-susceptible epidemic; Lie symmetry methods; advection rate; sensitivity analysis; diffusion coefficient; EPIDEMIC MODEL; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; PACKAGE;
D O I
10.3390/sym17010003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion susceptible-infectious-susceptible disease model with advection, vital dynamics (birth-death effects), and a standard incidence infection mechanism is carefully analyzed. Two distinct diffusion coefficients for the susceptible and infected populations are considered. The Lie symmetries and closed-form solutions for the RDA-SIS disease model are established. The derived solution allows to study dynamics of disease transmission. Our simulation clearly illustrates the evolution dynamics of the model by using the values of parameters from academic sources. A sensitivity analysis is performed, offering valuable perspectives that could inform future disease management policies.
引用
收藏
页数:15
相关论文
共 31 条
  • [1] Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation and spontaneous infection mechanism
    Zhang, Jialiang
    Cui, Renhao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [2] A SIS reaction-diffusion-advection model in a low-risk and high-risk domain
    Ge, Jing
    Kim, Kwang Ik
    Lin, Zhigui
    Zhu, Huaiping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5486 - 5509
  • [3] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [4] Symmetries and Conservation Laws for a Class of Fourth-Order Reaction-Diffusion-Advection Equations
    Torrisi, Mariano
    Tracina, Rita
    SYMMETRY-BASEL, 2023, 15 (10):
  • [5] The Closed-Form Solutions of an SIS Epidemic Reaction-Diffusion Model with Advection in a One-Dimensional Space Domain
    Naz, Rehana
    Torrisi, Mariano
    SYMMETRY-BASEL, 2024, 16 (08):
  • [6] THE CLOSED-FORM SOLUTIONS FOR A MODEL WITH TECHNOLOGY DIFFUSION VIA LIE SYMMETRIES
    Chaudhry, Azam
    Naz, Rehana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, : 1036 - 1053
  • [7] Analysis of a general reaction-diffusion model using Lie symmetries and conservation laws
    Saez-Martinez, Sol
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2025, 63 (02) : 419 - 434
  • [8] Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    NONLINEAR DYNAMICS, 2018, 92 (02) : 543 - 555
  • [9] On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws
    Yu, Jicheng
    Feng, Yuqiang
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [10] CLOSED-FORM SOLUTIONS FOR A REACTION-DIFFUSION SIR MODEL WITH DIFFERENT DIFFUSION COEFFICIENTS
    Naz, Rehana
    Johnpillai, Andrew gratien
    Mahomed, Fazal mahmood
    Omame, Andrew
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, : 870 - 881