Microstructure and tribological properties of FeCrNi-WC medium entropy alloy composite coatings prepared by high-speed laser cladding with different preheating temperatures

被引:0
|
作者
Ren, Zhiying [1 ,2 ]
Wang, Xin [1 ,2 ]
Zhao, Haichao [3 ]
Duan, Bingyan [4 ]
Zhou, Li [3 ,5 ]
Mou, Honglin [3 ,5 ]
Ma, Guozheng [3 ]
Wang, Haidou [3 ,5 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Inst Met Rubber & Vibrat Noise, Fuzhou 350116, Fujian, Peoples R China
[3] Army Acad Armored Forces, Natl Engn Res Ctr Remfg, Beijing 100072, Peoples R China
[4] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
[5] Army Acad Armored Forces, Natl Key Lab Remfg, Beijing 100072, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2025年 / 504卷
基金
中国国家自然科学基金;
关键词
High-speed laser cladding; Medium entropy alloy; Composite coatings; Tribolayer; Wear resistance; DRY SLIDING WEAR; MECHANICAL-PROPERTIES; NUMERICAL-SIMULATION; THERMAL-BEHAVIOR; FRICTION; DEPOSITION; EVOLUTION; LAYER; STEEL;
D O I
10.1016/j.surfcoat.2025.132047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To address the wear failure of brake drum surfaces in band brakes caused by high-frequency and heavy-load service conditions and to improve the wear resistance of the brake drum, FeCrNi-WC medium entropy alloy composite coatings were prepared on the surface of brake drum using high-speed laser cladding. Additionally, to prevent coating cracking and enhance microstructural homogeneity, the substrate was preheated at different temperatures (room temperature, 200 degrees C, 300 degrees C, and 400 degrees C). Based on the characterization and testing of the coating's phase structure, forming quality, microstructure, and wear resistance, the results indicated that the primary phase of the coating was an FCC solid solution, WC, W2C, Fe3W3C and Cr23C6, and the change in substrate preheating temperature did not affect the primary phase structure of the coatings. As the preheating temperature increased, the number of defects in the coating gradually decreased. The enhanced dissolution of WC particles in the coatings promoted the precipitation of Fe3W3C eutectic carbides, contributing to coating reinforcement. At a preheating temperature of 300 degrees C, FeCrNi-WC medium entropy alloy composite coating with no cracks and porosity and good forming quality could be achieved. At this temperature, the hardness of the coating reached 662.67 HV0.2, approximately 2.9 times that of the substrate. The excellent comprehensive properties enabled the coating to form a stable and dense tribolayer during sliding wear, resulting in a low friction coefficient accompanied by the lowest wear rate, with wear resistance improved by nearly two orders of magnitude compared to the substrate.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effect of WC particle size on the microstructure and tribological properties of high-speed laser cladding Ni/WC composite coatings
    Tan, Na
    Hu, Zeyu
    Zhou, Yujie
    Li, Yang
    Lu, Bingwen
    Hu, Dingchao
    Liu, Yang
    Li, Qiu
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [2] Microstructure and properties of Inconel 625+WC composite coatings prepared by laser cladding
    Tian, Zhi-Hua
    Zhao, Yong-Tao
    Jiang, Ya-Jun
    Ren, Hui-Ping
    RARE METALS, 2021, 40 (08) : 2281 - 2291
  • [3] Microstructure and Properties of High-Entropy AlxCoCrFe2.7MoNi Alloy Coatings Prepared by Laser Cladding
    Sha, Minghong
    Jia, Chuntang
    Qiao, Jun
    Feng, Wenqiang
    Ai, Xingang
    Jing, Yu-An
    Shen, Minggang
    Li, Shengli
    METALS, 2019, 9 (12)
  • [4] Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding
    Peng, Y. B.
    Zhang, W.
    Li, T. C.
    Zhang, M. Y.
    Wang, L.
    Song, Y.
    Hu, S. H.
    Hu, Y.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 84
  • [5] Investigation of the Microstructure and Properties of CoCrFeNiMo High-Entropy Alloy Coating Prepared through High-Speed Laser Cladding
    Zhang, Qi
    Li, Meiyan
    Wang, Qin
    Qi, Fuhao
    Kong, Mengkai
    Han, Bin
    COATINGS, 2023, 13 (07)
  • [6] Effect of Mo on Microstructure and Properties of AlCoCrFeNiMox High Entropy Alloy Coatings Prepared by Laser Cladding
    Sha Minghong
    Wang Shuang
    Li Shengli
    Jia Chuntang
    Huang Tiandang
    Zhu Xiaolei
    Ai Xingang
    Liao Xiangwei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (11) : 3685 - 3690
  • [7] Comparative studies on microstructure and properties of CoCrFeMnNi high entropy alloy coatings fabricated by high-speed laser cladding and normal laser cladding
    Zhang, Qi
    Wang, Qin
    Han, Bin
    Li, Meiyan
    Hu, Chunyang
    Wang, Jialin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [8] Microstructure and properties of WC-12Co composite coatings prepared by laser cladding
    Hu, Miao
    Tang, Jian-cheng
    Chen, Xin-gui
    Ye, Nan
    Zhao, Xin-yue
    Xu, Miao-miao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (04) : 1017 - 1030
  • [9] The influence of WC content on the microstructure and properties of laser cladding CoCrFeMnNiSi1.6 high-entropy alloy coatings
    Feng, Meiyan
    Lin, Tianxiang
    Lian, Guofu
    Chen, Changrong
    Huang, Xu
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 55286 - 55306
  • [10] Microstructure evolution, mechanical properties of FeCrNiMnAl high entropy alloy coatings fabricated by laser cladding
    Rui, He
    Wu, Meiping
    Chen, Cui
    Jie, Dadong
    Gong, Yuling
    Miao, Xiaojin
    SURFACE & COATINGS TECHNOLOGY, 2022, 447