Material Characterization of (C plus N) Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion

被引:0
|
作者
Blankenhagen, Jakob [1 ]
Diller, Johannes [1 ]
Siebert, Dorina [1 ]
Hegele, Patrick [2 ]
Radlbeck, Christina [1 ]
Mensinger, Martin [1 ]
机构
[1] Tech Univ Munich, Chair Met Struct, TUM Sch Engn & Design, Arcisstr 21, D-80333 Munich, Germany
[2] Tech Univ Munich, Inst Mat Sci, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
关键词
powder bed fusion of metals using a laser Beam; material characterization; fatigue; novel material; microstructure; high manganese austenitic stainless steel; FATIGUE BEHAVIOR; PERFORMANCE; POROSITY;
D O I
10.3390/met15020134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M), 316L is commonly used. PBF-LB/M/316L has its benefits, like good material properties, such as availability, corrosion resistance, strength, and ductility. Nevertheless, a higher-strength material is required to fully take advantage of the optimization process and achieve a greater reduction in the mass of manufactured parts. The high-strength austenitic stainless steel investigated in this study is Printdur (R) HSA. Its main alloying elements are manganese, chromium, molybdenum, carbon, and nitrogen. The steel obtains its high strength properties from the alloyed carbon and nitrogen via solid solution hardening and improving the austenite stability. Therefore, it is defined as (C+N) steel. The datasheet of the powder manufacturer describes a yield strength (Rp0.2; 0.2% offset proof stress) of 915 MPa, an ultimate tensile strength of 1120 MPa, and an elongation at fracture of 30%. These are clear benefits in comparison to PBF-LB/M/316L. Since there are no further investigations made on Printdur (R) HSA, a thorough investigation of material behavior, fatigue life, and microstructure is needed.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [32] Effect of hot isostatic pressing on the low-cycle fatigue behavior of laser powder bed fusion manufactured 21-6-9 austenitic stainless steel
    Ujiie, Ryosuke
    Neikter, Magnus
    Pederson, Robert
    Hansson, Thomas
    Miyashita, Yukio
    JOURNAL OF MATERIALS SCIENCE, 2025, 60 (07) : 3472 - 3483
  • [33] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [34] Microstructure mastering and fatigue behavior of duplex stainless steel obtained with laser powder bed fusion
    Piras, Maxime
    Hor, Anis
    Charkaluk, Eric
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 290 - 299
  • [35] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [36] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38
  • [37] Microstructure and mechanical properties of stainless steel addictively manufactured via laser powder bed fusion in high-dense process parameter window
    Huang, Guoliang
    Chen, Huan
    Ma, Zhaodandan
    Zhang, Ruiqian
    Pei, Jingyuan
    Lie, Ziyi
    Du, Peinan
    Peng, Xiaoqiang
    Liu, Ying
    Huang, Ke
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 928
  • [38] Creep behavior of 316 L stainless steel manufactured by laser powder b e d fusion
    Li, Meimei
    Zhang, Xuan
    Chen, Wei-Ying
    Byun, T. S.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 548
  • [39] Plasma Carburizing of Laser Powder Bed Fusion Manufactured 316 L Steel for Enhancing the Surface Hardness
    Montanari, Roberto
    Lanzutti, Alex
    Richetta, Maria
    Tursunbaev, Javokhir
    Vaglio, Emanuele
    Varone, Alessandra
    Verona, Claudio
    COATINGS, 2022, 12 (02)
  • [40] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458