Material Characterization of (C plus N) Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion

被引:0
|
作者
Blankenhagen, Jakob [1 ]
Diller, Johannes [1 ]
Siebert, Dorina [1 ]
Hegele, Patrick [2 ]
Radlbeck, Christina [1 ]
Mensinger, Martin [1 ]
机构
[1] Tech Univ Munich, Chair Met Struct, TUM Sch Engn & Design, Arcisstr 21, D-80333 Munich, Germany
[2] Tech Univ Munich, Inst Mat Sci, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
关键词
powder bed fusion of metals using a laser Beam; material characterization; fatigue; novel material; microstructure; high manganese austenitic stainless steel; FATIGUE BEHAVIOR; PERFORMANCE; POROSITY;
D O I
10.3390/met15020134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M), 316L is commonly used. PBF-LB/M/316L has its benefits, like good material properties, such as availability, corrosion resistance, strength, and ductility. Nevertheless, a higher-strength material is required to fully take advantage of the optimization process and achieve a greater reduction in the mass of manufactured parts. The high-strength austenitic stainless steel investigated in this study is Printdur (R) HSA. Its main alloying elements are manganese, chromium, molybdenum, carbon, and nitrogen. The steel obtains its high strength properties from the alloyed carbon and nitrogen via solid solution hardening and improving the austenite stability. Therefore, it is defined as (C+N) steel. The datasheet of the powder manufacturer describes a yield strength (Rp0.2; 0.2% offset proof stress) of 915 MPa, an ultimate tensile strength of 1120 MPa, and an elongation at fracture of 30%. These are clear benefits in comparison to PBF-LB/M/316L. Since there are no further investigations made on Printdur (R) HSA, a thorough investigation of material behavior, fatigue life, and microstructure is needed.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Corrosion Properties of Powder Bed Fusion Additively Manufactured 17-4 PH Stainless Steel
    Schaller, Rebecca F.
    Taylor, Jason M.
    Rodelas, Jeffrey
    Schindelholz, Eric J.
    CORROSION, 2017, 73 (07) : 796 - 807
  • [22] On the process of designing material qualification type specimens manufactured using laser powder bed fusion
    Tekerek, Emine
    Perumal, Vignesh
    Jacquemetton, Lars
    Beckett, Darren
    Halliday, H. Scott
    Wisner, Brian
    Kontsos, Antonios
    MATERIALS & DESIGN, 2023, 229
  • [23] Weldability of Additively Manufactured Powder Bed Fusion 316L Stainless Steel Using Arc and Laser Welding
    Faes, Koen
    Nunes, Rafael
    Probst, Florian
    Ceuppens, Robin
    De Waele, Wim
    CRYSTALS, 2024, 14 (04)
  • [24] Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing
    Kim, Rae Eon
    Jeong, Sang Guk
    Ha, Hyojeong
    Heo, Yoon-Uk
    Amanov, Auezhan
    Gu, Gang Hee
    Lee, Dong Jun
    Moon, Jongun
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 909
  • [25] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [26] Atomization gases dependent mechanical properties in the laser powder bed fusion manufactured 304L stainless steel
    Wang, Liyi
    Tan, Zhijian
    Wang, Shengxiang
    Liu, Weiqiang
    Hao, Jiazheng
    Zhang, Xuekai
    Deng, Sihao
    Yu, Chaoju
    Zheng, Haibiao
    Zeng, Zhirong
    Lu, Huaile
    He, Lunhua
    Chen, Jie
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 316
  • [27] Anisotropy study of the microstructure, phase composition and properties of 321 stainless steel additively manufactured by laser powder bed fusion
    Zou, Liang
    Huang, Yang
    Tan, Yun
    Wang, Yueting
    Wang, Tong
    Ma, Yue
    Yuan, Tiechui
    Li, Ruidi
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 141 : 1135 - 1150
  • [28] Effects of the heat treatment on the microstructure and corrosion behavior of 316 L stainless steel manufactured by Laser Powder Bed Fusion
    Bedmar, J.
    Garcia-Rodriguez, S.
    Roldan, M.
    Torres, B.
    Rams, J.
    CORROSION SCIENCE, 2022, 209
  • [29] Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion
    Trisnanto, Satria Robi
    Wang, Xianglong
    Brochu, Mathieu
    Omanovic, Sasha
    CORROSION SCIENCE, 2022, 196
  • [30] An integrated simulation approach for directing the texture control of austenitic stainless steel through laser beam powder bed fusion
    Chen, Guanhong
    Wang, Xiaowei
    Yang, Xinyu
    Yang, Xuqiong
    Zhang, Zhen
    Dai, Rongqing
    Gu, Jiayuan
    Zhang, Tianyu
    Wu, Guiyi
    Gong, Jianming
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2025, 336