Material Characterization of (C plus N) Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion

被引:0
|
作者
Blankenhagen, Jakob [1 ]
Diller, Johannes [1 ]
Siebert, Dorina [1 ]
Hegele, Patrick [2 ]
Radlbeck, Christina [1 ]
Mensinger, Martin [1 ]
机构
[1] Tech Univ Munich, Chair Met Struct, TUM Sch Engn & Design, Arcisstr 21, D-80333 Munich, Germany
[2] Tech Univ Munich, Inst Mat Sci, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
关键词
powder bed fusion of metals using a laser Beam; material characterization; fatigue; novel material; microstructure; high manganese austenitic stainless steel; FATIGUE BEHAVIOR; PERFORMANCE; POROSITY;
D O I
10.3390/met15020134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M), 316L is commonly used. PBF-LB/M/316L has its benefits, like good material properties, such as availability, corrosion resistance, strength, and ductility. Nevertheless, a higher-strength material is required to fully take advantage of the optimization process and achieve a greater reduction in the mass of manufactured parts. The high-strength austenitic stainless steel investigated in this study is Printdur (R) HSA. Its main alloying elements are manganese, chromium, molybdenum, carbon, and nitrogen. The steel obtains its high strength properties from the alloyed carbon and nitrogen via solid solution hardening and improving the austenite stability. Therefore, it is defined as (C+N) steel. The datasheet of the powder manufacturer describes a yield strength (Rp0.2; 0.2% offset proof stress) of 915 MPa, an ultimate tensile strength of 1120 MPa, and an elongation at fracture of 30%. These are clear benefits in comparison to PBF-LB/M/316L. Since there are no further investigations made on Printdur (R) HSA, a thorough investigation of material behavior, fatigue life, and microstructure is needed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Characterization of single crystalline austenitic stainless steel thin struts processed by laser powder bed fusion
    Wang, X.
    Muniz-Lerma, J. A.
    Sanchez-Mata, O.
    Shandiz, M. Attarian
    Brodusch, N.
    Gauvin, R.
    Brochu, M.
    SCRIPTA MATERIALIA, 2019, 163 : 51 - 56
  • [2] The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion
    Deng, Pu
    Karadge, Mallikarjun
    Rebak, Raul B.
    Gupta, Vipul K.
    Prorok, Barton C.
    Lou, Xiaoyuan
    ADDITIVE MANUFACTURING, 2020, 35
  • [3] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Zhou, Yiqi
    Kong, Decheng
    Li, Ruixue
    He, Xing
    Dong, Chaofang
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37 (04) : 587 - 606
  • [4] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Yiqi Zhou
    Decheng Kong
    Ruixue Li
    Xing He
    Chaofang Dong
    Acta Metallurgica Sinica (English Letters), 2024, 37 : 587 - 606
  • [5] Investigation of Material Properties of Wall Structures from Stainless Steel 316L Manufactured by Laser Powder Bed Fusion
    Hoang Minh Vu
    Meiniger, Steffen
    Ringel, Bjoern
    Hoche, Holger Claus
    Oechsner, Matthias
    Weigold, Matthias
    Schmitt, Matthias
    Schlick, Georg
    METALS, 2022, 12 (02)
  • [6] AUSTENITIC STAINLESS STEELS MANUFACTURING BY LASER POWDER BED FUSION TECHNIQUE
    Di Schino, Andrea
    Fogarait, Paolo
    Corapi, Domenico
    Di Pietro, Orlando
    Zitelli, Chiara
    ACTA METALLURGICA SLOVACA, 2020, 26 (01): : 24 - 26
  • [7] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [8] A novel 2.1 GPa martensitic stainless steel manufactured by laser powder bed fusion and post treatment
    Wang, Qipeng
    Liang, Yuzheng
    Chen, Xinsheng
    Yang, Ziwei
    Dong, Kewei
    Peng, Yong
    Zhou, Qi
    Wang, Kehong
    Kong, Jian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 : 1930 - 1937
  • [9] Effect of Initial Surface Morphology and Laser Parameters on the Laser Polishing of Stainless Steel Manufactured by Laser Powder Bed Fusion
    Liu, Jiangwei
    Zhao, Kangkang
    Wang, Xiebin
    Li, Hu
    MATERIALS, 2024, 17 (20)
  • [10] Process Parameter Optimization of 2507 Super Duplex Stainless Steel Additively Manufactured by the Laser Powder Bed Fusion Technique
    Mulhi, Ali
    Dehgahi, Shirin
    Waghmare, Prashant
    Qureshi, Ahmed J.
    METALS, 2023, 13 (04)