Recent advances and applications of machine learning in electrocatalysis

被引:15
|
作者
Hu, You [1 ]
Chen, Junhua [1 ]
Wei, Zheng [2 ]
He, Qiu [1 ]
Zhao, Yan [1 ,3 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, 24 Yihuan Rd, Chengdu 610065, Sichuan, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2023年 / 3卷 / 03期
基金
中国国家自然科学基金;
关键词
Machine learning; electrocatalysis; performance prediction; QUANTITATIVE STRUCTURE-ACTIVITY; ORGANIC-CHEMISTRY; NEURAL-NETWORKS; DISCOVERY; DESIGN; PERFORMANCE; MODELS; QSAR; EXTRACTION; MOLECULES;
D O I
10.20517/jmi.2023.23
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrocatalysis plays an important role in the production of clean energy and pollution control. Researchers have made great efforts to explore efficient, stable, and inexpensive electrocatalysts. However, traditional trial and error experiments and theoretical calculations require a significant amount of time and resources, which limits the development speed of electrocatalysts. Fortunately, the rapid development of machine learning (ML) has brought new solutions to scientific problems and new paradigms to the development of electrocatalysts. The combination of ML with experimental and theoretical calculations has propelled significant advancements in electrocatalysis research, particularly in the areas of materials screening, performance prediction, and catalysis theory development. In this review, we present a comprehensive overview of the workflow and cutting-edge techniques of ML in the field of electrocatalysis. In addition, we discuss the diverse applications of ML in predicting performance, guiding synthesis, and exploring the theory of catalysis. Finally, we conclude the review with the challenges of ML in electrocatalysis.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Machine learning applications in nanomaterials: Recent advances and future perspectives
    Yang, Liang
    Wang, Hong
    Leng, Deying
    Fang, Shipeng
    Yang, Yanning
    Du, Yurun
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [2] Recent Advances on Machine Learning Applications in Machining Processes
    Aggogeri, Francesco
    Pellegrini, Nicola
    Tagliani, Franco Luis
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [3] Recent advances in machine learning applications in metabolic engineering
    Patra, Pradipta
    Disha, B. R.
    Kundu, Pritam
    Das, Manali
    Ghosh, Amit
    BIOTECHNOLOGY ADVANCES, 2023, 62
  • [4] Recent Advances in Machine Learning for Fiber Optic Sensor Applications
    Venketeswaran, Abhishek
    Lalam, Nageswara
    Wuenschell, Jeffrey
    Ohodnicki, P. R., Jr.
    Badar, Mudabbir
    Chen, Kevin P.
    Lu, Ping
    Duan, Yuhua
    Chorpening, Benjamin
    Buric, Michael
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (01)
  • [5] Recent Advances of PtCu Alloy in Electrocatalysis: Innovations and Applications
    Shen, Ziyang
    Tang, Jinyao
    Shen, Xiaochen
    CATALYSTS, 2024, 14 (06)
  • [6] Recent research advances on interactive machine learning
    Jiang, Liu
    Liu, Shixia
    Chen, Changjian
    JOURNAL OF VISUALIZATION, 2019, 22 (02) : 401 - 417
  • [7] Machine learning methods in finance: Recent applications and prospects
    Hoang, Daniel
    Wiegratz, Kevin
    EUROPEAN FINANCIAL MANAGEMENT, 2023, 29 (05) : 1657 - 1701
  • [8] Recent advances in the applications of machine learning methods for heat exchanger modeling-a review
    Zou, Junjia
    Hirokawa, Tomoki
    An, Jiabao
    Huang, Long
    Camm, Joseph
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [9] Recent advances in applications of machine learning in reward crowdfunding success forecasting
    Cavalcanti G.D.C.
    Mendes-Da-Silva W.
    dos Santos Felipe I.J.
    Santos L.A.
    Neural Computing and Applications, 2024, 36 (26) : 16485 - 16501
  • [10] Recent advances and applications of machine learning in the variable renewable energy sector
    Chatterjee, Subhajit
    Khan, Prince Waqas
    Korea, Yung-Cheol Byun South
    ENERGY REPORTS, 2024, 12 : 5044 - 5065