TOTAL MUTUAL-VISIBILITY IN HAMMING GRAPHS

被引:3
作者
Bujtas, Csilla [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Tian, Jing [2 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
mutual-visibility set; total mutual-visibility set; Hamming graph; Tur & aacute; n-type problem; ROBOTS;
D O I
10.7494/OpMath.2025.45.1.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph and X C V (G), then X is a total mutual-visibility set if every pair of vertices x and y of G admits the shortest x, y-path P with V (P) n X C {x, y}. The cardinality of the largest total mutual-visibility set of G is the total mutual-visibility number mu t(G) of G. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values mu t(Kn(1) square Kn(2) square Kn(3)) are determined. It is proved that mu t(Kn(1) square center dot center dot center dot square Kn(r) ) = O(Nr-2), where N = n1 + center dot center dot center dot +nr, and that mu t(K-s square ,r) = Theta(s(r-2)) for every r> 3, where K square ,r s denotes the Cartesian product of r copies of Ks. The main theorems are also reformulated as Tur & aacute;n-type results on hypergraphs.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 50 条
[41]   L(h, k)-labelings of Hamming graphs [J].
Huang, Lian-Hwao ;
Chang, Gerard J. .
DISCRETE MATHEMATICS, 2009, 309 (08) :2197-2201
[42]   Minimum supports of functions on the Hamming graphs with spectral constraints [J].
Valyuzhenich, Alexandr ;
Vorob'ev, Konstantin .
DISCRETE MATHEMATICS, 2019, 342 (05) :1351-1360
[43]   Graphs over Graded Rings and Relation with Hamming Graph [J].
Mehry, Shahram ;
Mahmoudi, Saadoun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :3413-3429
[44]   On Distance Magic Labelings of Hamming Graphs and Folded Hypercubes [J].
Miklavic, Stefko ;
Sparl, Primoz .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) :17-33
[45]   Graphs over Graded Rings and Relation with Hamming Graph [J].
Shahram Mehry ;
Saadoun Mahmoudi .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :3413-3429
[46]   THE COMPETITION NUMBERS OF HAMMING GRAPHS WITH DIAMETER AT MOST THREE [J].
Park, Boram ;
Sano, Yoshio .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) :691-702
[47]   Divergence zero quaternionic vector fields and Hamming graphs [J].
Prezelj, Jasna ;
Vlacci, Fabio .
ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (02) :189-208
[48]   The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters [J].
Brouwer, Andries E. ;
Cioaba, Sebastian M. ;
Ihringer, Ferdinand ;
McGinnis, Matt .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 133 :88-121
[49]   On Multifold Packings of Radius-1 Balls in Hamming Graphs [J].
Krotov, Denis S. ;
Potapov, Vladimir N. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) :3585-3598