TOTAL MUTUAL-VISIBILITY IN HAMMING GRAPHS

被引:3
作者
Bujtas, Csilla [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Tian, Jing [2 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
mutual-visibility set; total mutual-visibility set; Hamming graph; Tur & aacute; n-type problem; ROBOTS;
D O I
10.7494/OpMath.2025.45.1.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph and X C V (G), then X is a total mutual-visibility set if every pair of vertices x and y of G admits the shortest x, y-path P with V (P) n X C {x, y}. The cardinality of the largest total mutual-visibility set of G is the total mutual-visibility number mu t(G) of G. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values mu t(Kn(1) square Kn(2) square Kn(3)) are determined. It is proved that mu t(Kn(1) square center dot center dot center dot square Kn(r) ) = O(Nr-2), where N = n1 + center dot center dot center dot +nr, and that mu t(K-s square ,r) = Theta(s(r-2)) for every r> 3, where K square ,r s denotes the Cartesian product of r copies of Ks. The main theorems are also reformulated as Tur & aacute;n-type results on hypergraphs.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 50 条
[31]   The competition numbers of ternary Hamming graphs [J].
Park, Boram ;
Sano, Yoshio .
APPLIED MATHEMATICS LETTERS, 2011, 24 (09) :1608-1613
[32]   Notes on Johnson and Hamming signed graphs [J].
Koledin, Tamara ;
Stanic, Zoran .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (03) :303-315
[33]   Perfect 2-colorings of Hamming graphs [J].
Bespalov, Evgeny A. ;
Krotov, Denis S. ;
Matiushev, Aleksandr A. ;
Taranenko, Anna A. ;
Vorob'ev, Konstantin V. .
JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (06) :367-396
[34]   s-Elusive codes in Hamming graphs [J].
Daniel R. Hawtin .
Designs, Codes and Cryptography, 2021, 89 :1211-1220
[35]   A Characterization of the Hamming Graphs and the Dual Polar Graphs by Completely Regular Subgraphs [J].
Hiraki, Akira .
GRAPHS AND COMBINATORICS, 2012, 28 (04) :449-467
[36]   A Characterization of the Hamming Graphs and the Dual Polar Graphs by Completely Regular Subgraphs [J].
Akira Hiraki .
Graphs and Combinatorics, 2012, 28 :449-467
[37]   A special antidilation problem for meshes and Hamming graphs [J].
Toeroek, Lubomir ;
Vrt'o, Imrich .
DISCRETE MATHEMATICS, 2012, 312 (14) :2170-2176
[38]   On radio graceful Hamming graphs of any diameter [J].
Niedzialomski, Amanda ;
Niedzialomski, Robert .
DISCRETE MATHEMATICS AND APPLICATIONS, 2024, 34 (05) :283-290
[39]   Distance-two labellings of Hamming graphs [J].
Chang, Gerard J. ;
Lu, Changhong ;
Zhou, Sanming .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) :1896-1904
[40]   s-Elusive codes in Hamming graphs [J].
Hawtin, Daniel R. .
DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (06) :1211-1220