TOTAL MUTUAL-VISIBILITY IN HAMMING GRAPHS

被引:3
作者
Bujtas, Csilla [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Tian, Jing [2 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
mutual-visibility set; total mutual-visibility set; Hamming graph; Tur & aacute; n-type problem; ROBOTS;
D O I
10.7494/OpMath.2025.45.1.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph and X C V (G), then X is a total mutual-visibility set if every pair of vertices x and y of G admits the shortest x, y-path P with V (P) n X C {x, y}. The cardinality of the largest total mutual-visibility set of G is the total mutual-visibility number mu t(G) of G. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values mu t(Kn(1) square Kn(2) square Kn(3)) are determined. It is proved that mu t(Kn(1) square center dot center dot center dot square Kn(r) ) = O(Nr-2), where N = n1 + center dot center dot center dot +nr, and that mu t(K-s square ,r) = Theta(s(r-2)) for every r> 3, where K square ,r s denotes the Cartesian product of r copies of Ks. The main theorems are also reformulated as Tur & aacute;n-type results on hypergraphs.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 50 条
[21]   Mutual Visibility in Hypercube-Like Graphs [J].
Cicerone, Serafino ;
Di Fonso, Alessia ;
Di Stefano, Gabriele ;
Navarra, Alfredo ;
Piselli, Francesco .
STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2024, 2024, 14662 :192-207
[22]   RESOLVABILITY OF HAMMING GRAPHS [J].
Laird, Lucas ;
Tillquist, Richard C. ;
Becker, Stephen ;
Lladser, Manuel E. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) :2063-2081
[23]   Eigenspaces of Hamming graphs and unitary Cayley graphs [J].
Sander, Torsten .
ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (01) :13-19
[24]   RADIO GRACEFUL HAMMING GRAPHS [J].
Niedzialomski, Amanda .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) :1007-1020
[25]   Lattices associated with Hamming graphs [J].
Qi, Jinyun ;
Zhang, Baohuan ;
Li, Zengti .
ARS COMBINATORIA, 2016, 128 :47-53
[26]   On the Acyclic Chromatic Number of Hamming Graphs [J].
Robert E. Jamison ;
Gretchen L. Matthews .
Graphs and Combinatorics, 2008, 24 :349-360
[27]   Antibandwidth and cyclic antibandwidth of Hamming graphs [J].
Dobrev, Stefan ;
Kralovic, Rastislav ;
Pardubska, Dana ;
Toeroek, L'ubomir ;
Vrt'o, Imrich .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) :1402-1408
[28]   On a Conjecture Regarding Identification in Hamming Graphs [J].
Junnila, Ville ;
Laihonen, Tero ;
Lehtila, Tuomo .
ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02)
[29]   On the acyclic chromatic number of Hamming graphs [J].
Jamison, Robert E. ;
Matthews, Gretchen L. .
GRAPHS AND COMBINATORICS, 2008, 24 (04) :349-360
[30]   Partial Hamming graphs and expansion procedures [J].
Bresar, B .
DISCRETE MATHEMATICS, 2001, 237 (1-3) :13-27