TOTAL MUTUAL-VISIBILITY IN HAMMING GRAPHS

被引:0
作者
Bujtas, Csilla [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Tian, Jing [2 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
mutual-visibility set; total mutual-visibility set; Hamming graph; Tur & aacute; n-type problem; ROBOTS;
D O I
10.7494/OpMath.2025.45.1.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph and X C V (G), then X is a total mutual-visibility set if every pair of vertices x and y of G admits the shortest x, y-path P with V (P) n X C {x, y}. The cardinality of the largest total mutual-visibility set of G is the total mutual-visibility number mu t(G) of G. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values mu t(Kn(1) square Kn(2) square Kn(3)) are determined. It is proved that mu t(Kn(1) square center dot center dot center dot square Kn(r) ) = O(Nr-2), where N = n1 + center dot center dot center dot +nr, and that mu t(K-s square ,r) = Theta(s(r-2)) for every r> 3, where K square ,r s denotes the Cartesian product of r copies of Ks. The main theorems are also reformulated as Tur & aacute;n-type results on hypergraphs.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 50 条
  • [21] RADIO GRACEFUL HAMMING GRAPHS
    Niedzialomski, Amanda
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 1007 - 1020
  • [22] Lattices associated with Hamming graphs
    Qi, Jinyun
    Zhang, Baohuan
    Li, Zengti
    ARS COMBINATORIA, 2016, 128 : 47 - 53
  • [23] On the Acyclic Chromatic Number of Hamming Graphs
    Robert E. Jamison
    Gretchen L. Matthews
    Graphs and Combinatorics, 2008, 24 : 349 - 360
  • [24] On a Conjecture Regarding Identification in Hamming Graphs
    Junnila, Ville
    Laihonen, Tero
    Lehtila, Tuomo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02)
  • [25] Antibandwidth and cyclic antibandwidth of Hamming graphs
    Dobrev, Stefan
    Kralovic, Rastislav
    Pardubska, Dana
    Toeroek, L'ubomir
    Vrt'o, Imrich
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1402 - 1408
  • [26] Partial Hamming graphs and expansion procedures
    Bresar, B
    DISCRETE MATHEMATICS, 2001, 237 (1-3) : 13 - 27
  • [27] On the acyclic chromatic number of Hamming graphs
    Jamison, Robert E.
    Matthews, Gretchen L.
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 349 - 360
  • [28] Notes on Johnson and Hamming signed graphs
    Koledin, Tamara
    Stanic, Zoran
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (03): : 303 - 315
  • [29] The competition numbers of ternary Hamming graphs
    Park, Boram
    Sano, Yoshio
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1608 - 1613
  • [30] Perfect 2-colorings of Hamming graphs
    Bespalov, Evgeny A.
    Krotov, Denis S.
    Matiushev, Aleksandr A.
    Taranenko, Anna A.
    Vorob'ev, Konstantin V.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (06) : 367 - 396