Multi-Objective Counterfactual Explanations

被引:134
作者
Dandl, Susanne [1 ]
Molnar, Christoph [1 ]
Binder, Martin [1 ]
Bischl, Bernd [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Stat, Ludwigstr 33, D-80539 Munich, Germany
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I | 2020年 / 12269卷
关键词
Interpretability; Interpretable machine learning; Counterfactual explanations; Multi-objective optimization; NSGA-II; ALGORITHM;
D O I
10.1007/978-3-030-58112-1_31
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of 'what-if scenarios'. Most current approaches optimize a collapsed, weighted sum of multiple objectives, which are naturally difficult to balance a-priori. We propose the Multi-Objective Counterfactuals (MOC) method, which translates the counterfactual search into a multi-objective optimization problem. Our approach not only returns a diverse set of counterfactuals with different trade-offs between the proposed objectives, but also maintains diversity in feature space. This enables a more detailed post-hoc analysis to facilitate better understanding and also more options for actionable user responses to change the predicted outcome. Our approach is also model-agnostic and works for numerical and categorical input features. We show the usefulness of MOC in concrete cases and compare our approach with state-of-the-art methods for counterfactual explanations.
引用
收藏
页码:448 / 469
页数:22
相关论文
共 37 条
  • [1] Allaire J, 2019, keras: R Interface to 'Keras'
  • [2] Avila S.L., 2006, OIPE
  • [3] Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles
    Binder, Martin
    Moosbauer, Julia
    Thomas, Janek
    Bischl, Bernd
    [J]. GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 471 - 479
  • [4] Bischl B, 2016, J MACH LEARN RES, V17
  • [5] Statistical modeling: The two cultures
    Breiman, L
    [J]. STATISTICAL SCIENCE, 2001, 16 (03) : 199 - 215
  • [6] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [7] Deb K., 1995, Complex Systems, V9, P115
  • [8] Dhurandhar A, 2019, Arxiv, DOI arXiv:1906.00117
  • [9] Flach P., 2019, FACE: Feasible and Actionable Counterfactual Explanations
  • [10] Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation
    Goldstein, Alex
    Kapelner, Adam
    Bleich, Justin
    Pitkin, Emil
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (01) : 44 - 65