Multi-Objective Counterfactual Explanations

被引:158
作者
Dandl, Susanne [1 ]
Molnar, Christoph [1 ]
Binder, Martin [1 ]
Bischl, Bernd [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Stat, Ludwigstr 33, D-80539 Munich, Germany
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I | 2020年 / 12269卷
关键词
Interpretability; Interpretable machine learning; Counterfactual explanations; Multi-objective optimization; NSGA-II; ALGORITHM;
D O I
10.1007/978-3-030-58112-1_31
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of 'what-if scenarios'. Most current approaches optimize a collapsed, weighted sum of multiple objectives, which are naturally difficult to balance a-priori. We propose the Multi-Objective Counterfactuals (MOC) method, which translates the counterfactual search into a multi-objective optimization problem. Our approach not only returns a diverse set of counterfactuals with different trade-offs between the proposed objectives, but also maintains diversity in feature space. This enables a more detailed post-hoc analysis to facilitate better understanding and also more options for actionable user responses to change the predicted outcome. Our approach is also model-agnostic and works for numerical and categorical input features. We show the usefulness of MOC in concrete cases and compare our approach with state-of-the-art methods for counterfactual explanations.
引用
收藏
页码:448 / 469
页数:22
相关论文
共 37 条
[1]  
Allaire J., 2019, keras: R Interface to 'Keras'. R package version 2.2.5.0
[2]  
Avila S.L., 2006, OIPE
[3]   Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles [J].
Binder, Martin ;
Moosbauer, Julia ;
Thomas, Janek ;
Bischl, Bernd .
GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, :471-479
[4]  
Bischl B, 2016, J MACH LEARN RES, V17
[5]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[6]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[7]  
Deb K., 1995, Complex Systems, V9, P115
[8]  
Dhurandhar A, 2019, Arxiv, DOI arXiv:1906.00117
[9]  
Flach P., 2019, FACE: Feasible and Actionable Counterfactual Explanations
[10]   Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation [J].
Goldstein, Alex ;
Kapelner, Adam ;
Bleich, Justin ;
Pitkin, Emil .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (01) :44-65