Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation

被引:0
|
作者
Mittal, Sudhanshu [1 ]
Niemeijer, Joshua [2 ,3 ]
Cicek, Oezguen [4 ]
Tatarchenko, Maxim [4 ]
Ehrhardt, Jan [3 ]
Schaefer, Joerg P. [2 ]
Handels, Heinz [3 ]
Brox, Thomas [1 ]
机构
[1] Univ Freiburg, Freiburg, Germany
[2] German Aerosp Ctr DLR, Braunschweig, Germany
[3] Univ Lubeck, Lubeck, Germany
[4] Robert Bosch GmbH, Gerlingen, Germany
关键词
Active learning; Semi supervised learning; Classification; Segmentation;
D O I
10.1007/s11263-025-02372-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Retraction Note: Medical image semantic segmentation based on deep learning
    Feng Jiang
    Aleksei Grigorev
    Seungmin Rho
    Zhihong Tian
    YunSheng Fu
    Worku Jifara
    Khan Adil
    Shaohui Liu
    Neural Computing and Applications, 2024, 36 (18) : 11057 - 11057
  • [42] Semantic Image Segmentation using Deep Learning for Low Illumination Environment
    Sakhamuri, Sridevi
    Kumar, K. Kiran
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 2452 - 2461
  • [43] RETRACTED ARTICLE: Medical image semantic segmentation based on deep learning
    Feng Jiang
    Aleksei Grigorev
    Seungmin Rho
    Zhihong Tian
    YunSheng Fu
    Worku Jifara
    Khan Adil
    Shaohui Liu
    Neural Computing and Applications, 2018, 29 : 1257 - 1265
  • [44] Image Processing and Deep Learning Methods for the Semantic Segmentation of Blastocyst Structures
    Villota, Maria
    Ayensa-Jimenez, Jacobo
    Doblare, Manuel
    Heras, Jonathan
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 213 - 222
  • [45] Deep Active Learning for Joint Classification & Segmentation with Weak Annotator
    Belharbi, Soufiane
    Ben Ayed, Ismail
    McCaffrey, Luke
    Granger, Eric
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3337 - 3346
  • [46] Substep active deep learning framework for image classification
    Guoqiang Li
    Ning Gong
    Pattern Analysis and Applications, 2021, 24 : 23 - 34
  • [47] Substep active deep learning framework for image classification
    Li, Guoqiang
    Gong, Ning
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (01) : 23 - 34
  • [48] Deep active learning models for imbalanced image classification
    Jin, Qiuye
    Yuan, Mingzhi
    Wang, Haoran
    Wang, Manning
    Song, Zhijian
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [49] A Review on Deep Learning Approaches to Image Classification and Object Segmentation
    Wu, Hao
    Liu, Qi
    Liu, Xiaodong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 575 - 597
  • [50] Deep Learning for Pulmonary Image Analysis: Classification, Detection, and Segmentation
    Kido, Shoji
    Hirano, Yasushi
    Mabu, Shingo
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 47 - 58