Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation

被引:0
作者
Mittal, Sudhanshu [1 ]
Niemeijer, Joshua [2 ,3 ]
Cicek, Oezguen [4 ]
Tatarchenko, Maxim [4 ]
Ehrhardt, Jan [3 ]
Schaefer, Joerg P. [2 ]
Handels, Heinz [3 ]
Brox, Thomas [1 ]
机构
[1] Univ Freiburg, Freiburg, Germany
[2] German Aerosp Ctr DLR, Braunschweig, Germany
[3] Univ Lubeck, Lubeck, Germany
[4] Robert Bosch GmbH, Gerlingen, Germany
关键词
Active learning; Semi supervised learning; Classification; Segmentation;
D O I
10.1007/s11263-025-02372-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.
引用
收藏
页码:4294 / 4316
页数:23
相关论文
共 61 条
[1]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[2]   The power of ensembles for active learning in image classification [J].
Beluch, William H. ;
Genewein, Tim ;
Nuernberger, Andreas ;
Koehler, Jan M. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9368-9377
[3]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[4]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[5]   Semantic object classes in video: A high-definition ground truth database [J].
Brostow, Gabriel J. ;
Fauqueur, Julien ;
Cipolla, Roberto .
PATTERN RECOGNITION LETTERS, 2009, 30 (02) :88-97
[6]   Revisiting Superpixels for Active Learning in Semantic Segmentation with Realistic Annotation Costs [J].
Cai, Lile ;
Xu, Xun ;
Liew, Jun Hao ;
Foo, Chuan Sheng .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10983-10992
[7]  
Chapelle O., 2006, SEMISUPERVISED LEARN, P1, DOI DOI 10.7551/MITPRESS/9780262033589.001.0001
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]  
Chen LJ, 2018, ADV NEUR IN, V31
[10]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547