Fluoro-2-deoxy-D-glucose (18F-FDG) positron slowing down, annihilation, and electron capture absorbed doses in female patients

被引:0
作者
Mohajeri, F. [1 ]
Ezzati, A. [1 ]
Studenski, M. [2 ]
机构
[1] Univ Tabriz, Dept Phys, Tabriz, Iran
[2] Univ Miami, Dept Radiat Oncol, Miami, FL 33136 USA
来源
INTERNATIONAL JOURNAL OF RADIATION RESEARCH | 2024年 / 22卷 / 03期
关键词
dosimetry; Monte Carlo; Uptake; biokinetics; NUCLEAR-MEDICINE; MONTE-CARLO; PET/CT; FDG; DOSIMETRY; INFLAMMATION; PROGRAM; CANCER; ADULT;
D O I
10.61186/ijrr.22.3.559
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: 18-F fluoro-2-deoxy-D-glucose (F-18-FDG) is the most common tracer in whole-body positron emission tomography (PET) imaging for cancer. The diagnostic information gained from a F-18-FDG is beneficial, but the administration of radioactive material always comes with an increased risk of secondary cancer. The objective of this paper was to calculate the effective dose for F-18-FDG injected patients considering the specific contribution from positron slowing down, positron annihilation, and electron capture mechanisms. Materials and Methods: The dose for various organs was estimated by using the Monte Carlo (MC) method. The Medical Internal Radiation Dose (MIRD) female phantom was used for the simulations and the effective doses to various organs from internal exposure from a(18)F-FDG injection were calculated using a biokinetic model and International Commission on Radiological Protection (ICRP) publication 128 provided data. Calculated doses were compared with measured doses found in published studies. Results: The dose for each organ is dependent on the F-18 decay mode. The total effective dose is 6.73 mSv when the administered activity is 185 MBq. Positron annihilation leads to the highest average effective dose at 3.57 mSv. The effective doses for positron slowing and electron capture gammas are 2.99 and 0.17 mSv, respectively. The urinary bladder, followed by the brain and heart, have the highest absorbed doses. The calculated doses for a female patient are in good agreement with published measured data. Conclusions: The results presented here can be used to scale the dose measured by a dosimeter to estimate the patient's absorbed dose. Tracking the cumulative effective dose from medical procedures is an important aspect of managing the care of cancer patients to ensure regulatory limits are not exceeded.
引用
收藏
页码:559 / 564
页数:6
相关论文
共 26 条
[1]   FDG uptake in breast cancer and Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Association with Histopathological, Hormonal status, and Clinical Features [J].
Alcin, G. ;
Arslan, E. ;
Aksoy, T. ;
Akbas, S. ;
Cermik, T. F. .
INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (04) :815-821
[2]   AN INTERNAL RADIATION DOSIMETRY COMPUTER PROGRAM, IDAC 2.0, FOR ESTIMATION OF PATIENT DOSES FROM RADIOPHARMACEUTICALS [J].
Andersson, M. ;
Johansson, L. ;
Minarik, D. ;
Mattsson, S. ;
Leide-Svegborn, S. .
RADIATION PROTECTION DOSIMETRY, 2014, 162 (03) :299-305
[3]   IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms [J].
Andersson, Martin ;
Johansson, Lennart ;
Eckerman, Keith ;
Mattsson, Soren .
EJNMMI RESEARCH, 2017, 7
[4]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[5]   FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 [J].
Boellaard, Ronald ;
O'Doherty, Mike J. ;
Weber, Wolfgang A. ;
Mottaghy, Felix M. ;
Lonsdale, Markus N. ;
Stroobants, Sigrid G. ;
Oyen, Wim J. G. ;
Kotzerke, Joerg ;
Hoekstra, Otto S. ;
Pruim, Jan ;
Marsden, Paul K. ;
Tatsch, Klaus ;
Hoekstra, Corneline J. ;
Visser, Eric P. ;
Arends, Bertjan ;
Verzijlbergen, Fred J. ;
Zijlstra, Josee M. ;
Comans, Emile F. I. ;
Lammertsma, Adriaan A. ;
Paans, Anne M. ;
Willemsen, Antoon T. ;
Beyer, Thomas ;
Bockisch, Andreas ;
Schaefer-Prokop, Cornelia ;
Delbeke, Dominique ;
Baum, Richard P. ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (01) :181-200
[6]   Monte Carlo simulations in emission tomography and GATE: An overview [J].
Buvat, Irene ;
Lazaro, Delphine .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 569 (02) :323-329
[7]   Prognostic value of various metabolic parameters on pre-treatment 18F-FDG PET/CT in patients with stage I-III non-small cell lung cancer [J].
Demir, F. ;
Yanarates, A. .
INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2020, 18 (04) :799-807
[8]  
Eckerman K, 2008, Ann ICRP, V38, P7, DOI [10.1016/j.icrp.2009.02.001, 10.1016/j.icrp.2008.10.004]
[9]   Positron CSDA range and stopping power calculations in some human body tissues by using Lenz Jensen atomic screening function [J].
Gumus, Hasan .
RADIATION PHYSICS AND CHEMISTRY, 2022, 196
[10]   Revisions to the ORNL series of adult and pediatric computational phantoms for use with the mird schema [J].
Han, EY ;
Bolch, WE ;
Eckerman, KF .
HEALTH PHYSICS, 2006, 90 (04) :337-356