Changing Extreme Precipitation Patterns in Nepal Over 1971-2015

被引:0
|
作者
Luo, Yinxue [1 ]
Wang, Lang [2 ]
Hu, Chenxi [3 ,4 ]
Hao, Lu [1 ]
Sun, Ge [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Ecosyst Carbon Source & Sink, China Meteorol Adm ECSS CMA, Nanjing, Peoples R China
[2] Chinese Univ Hong Kong, Dept Geog & Resource Management, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Earth & Environm Sci Programme, Hong Kong, Peoples R China
[4] Univ Texas Austin, Jackson Sch Geosci, Dept Earth & Planetary Sci, Austin, TX USA
[5] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, Southern Res Stn, USDA, Res Triangle Pk, NC USA
基金
中国国家自然科学基金;
关键词
extreme precipitation; Nepal; Indian summer monsoon; gridded precipitation; in-situ precipitation; ASIAN SUMMER MONSOON; CLIMATE-CHANGE; DAILY TEMPERATURE; RIVER-BASIN; DRY SPELLS; RAINFALL; VARIABILITY; TRENDS; CIRCULATION; RESOLUTION;
D O I
10.1029/2024EA003563
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper provides a comprehensive and comparative analysis of extreme precipitation patterns from 1971 to 2015 in Nepal, a data scarce, but "hot spot" region in global climate change. We compare in-situ observations and gridded precipitation data from the Asian Precipitation Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE). Using 11 precipitation indices, we show that high-intensity (RX1day, R95pTOT, R99pTOT) and frequency-related indices (R10 mm, R20 mm) have decreased but annual maximum consecutive dry and wet days have increased. Observations affirm these trends found by the APHRODITE, but show smaller magnitudes likely due to differences in measurements at locations made below the 3,000 m elevation line. Spatially, the relatively dry western region has become wetter, and the relatively wet eastern region has become drier post-2003. The weakening of the South Asia Monsoon circulation, particularly assessed by the Webster and Yang Monsoon Index, correlates strongly with extreme precipitation indices. Changes in upper-level jet and associated lower-level monsoon trough are identified as critical factors influencing the extreme precipitation trend post-2003. This study is the first to confirm the efficacy of APHRODITE in providing spatial and temporal precipitation patterns in a data-limited region. We conclude that monsoon weakened circulations and changes in regional wind fields play dominant roles in the long-term temporal and spatial trends of extreme precipitation in Nepal. The reduced precipitation extremes in the wet eastern region may somewhat lessen severe flooding and erosion, but the drier western region may face heightened risks in precipitation-related hazards in Nepal.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Changes in extreme precipitation patterns over the Greater Antilles and teleconnection with large-scale sea surface temperature
    Destouches, Carlo
    Diedhiou, Arona
    Anquetin, Sandrine
    Hingray, Benoit
    Pierre, Armand
    Boisson, Dominique
    Joseph, Adermus
    EARTH SYSTEM DYNAMICS, 2025, 16 (02) : 497 - 512
  • [42] How do CMIP6 models project changes in precipitation extremes over seasons and locations across the mid hills of Nepal?
    Chhetri, Ramesh
    Pandey, Vishnu P.
    Talchabhadel, Rocky
    Thapa, Bhesh Raj
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 145 (3-4) : 1127 - 1144
  • [43] Non-stationary peaks-over-threshold analysis of extreme precipitation events in Finland, 1961-2016
    Pedretti, Daniele
    Irannezhad, Masoud
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (02) : 1128 - 1143
  • [44] Changes in Hourly Extreme Precipitation Over Eastern China From 1970 to 2019 Dominated by Synoptic-Scale Precipitation
    Ng, Chan-Pang
    Zhang, Qinghong
    Li, Wenhong
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (05)
  • [45] A comprehensive view on trends in extreme precipitation in Nepal and their spatial distribution
    Bohlinger, Patrik
    Sorteberg, Asgeir
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (04) : 1833 - 1845
  • [46] Major moisture source patterns for extreme precipitation events over the Chinese Loess Plateau
    Zhang, Mingxi
    Zhong, Deyu
    Huang, Wenyu
    Zhang, Yu
    Wang, Guangqian
    Li, Tiejian
    Tian, Yinglin
    Xie, Di
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (15) : 7951 - 7967
  • [47] Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation
    Agyekum, Jacob
    Annor, Thompson
    Quansah, Emmanuel
    Lamptey, Benjamin
    Okafor, Gloria
    SCIENTIFIC AFRICAN, 2022, 16
  • [48] Extreme precipitation over the Crimean peninsula
    Voskresenskaya, Elena
    Vyshkvarkova, Elena
    QUATERNARY INTERNATIONAL, 2016, 409 : 75 - 80
  • [49] Potential impacts of climate change on extreme precipitation over four African coastal cities
    Abiodun, Babatunde J.
    Adegoke, Jimmy
    Abatan, Abayomi A.
    Ibe, Chidi A.
    Egbebiyi, Temitope S.
    Engelbrecht, Francois
    Pinto, Izidine
    CLIMATIC CHANGE, 2017, 143 (3-4) : 399 - 413
  • [50] Patterns of change in high frequency precipitation variability over North America
    Roque-Malo, Susana
    Kumar, Praveen
    SCIENTIFIC REPORTS, 2017, 7