Essential protein prediction based on generative adversarial networks

被引:0
|
作者
Lu, Pengli [1 ]
Qiao, Guoxin [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2025年
关键词
Essential proteins; deep learning; generative adversarial networks; gene expression; protein-protein interaction networks; IDENTIFYING ESSENTIAL PROTEINS; CENTRALITY; DATABASE; GENOME; IDENTIFICATION;
D O I
10.1142/S0129183125500354
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Essential proteins in cells and organisms play a critical role in maintaining normal life functioning and also provide important support in understanding disease pathogenesis. Although existing machine learning and deep learning methods have made some progress in predicting essential proteins, the use of data augmentation methods to improve model robustness and generalization becomes particularly important due to the critical role of data in training models. However, it remains a challenge to use limited data for data augmentation to improve the accuracy of predicting essential proteins. Therefore, we propose an algorithm for essential protein identification based on generative adversarial networks. First, we input the preprocessed gene expression data into a pre-trained generative adversarial network generator to expand the existing gene expression dataset. Second, features are extracted through the confrontation between the generator and the discriminator in the generative adversarial network and PCA technique is applied to downscale these features to make them more representative. Subsequently, the Node2vec method is applied to capture the rich features in the Protein-Protein Interaction (PPI) networks. Finally, we fuse the extracted gene expression profile features with the features of the PPI network and input them into a deep neural network for classification. Experimental results show that our proposed method has better performance compared to existing methods for predicting essential protein.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Collaborative Learning of Generative Adversarial Networks
    Tsukahara, Takuya
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 492 - 499
  • [42] Generative Adversarial Networks: A Literature Review
    Cheng, Jieren
    Yang, Yue
    Tang, Xiangyan
    Xiong, Naixue
    Zhang, Yuan
    Lei, Feifei
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (12): : 4625 - 4647
  • [43] αβ-GAN: Robust generative adversarial networks
    Aurele Tohokantche, Aurele Tohokantche
    Cao, Wenming
    Mao, Xudong
    Wu, Si
    Wong, Hau-San
    Li, Qing
    INFORMATION SCIENCES, 2022, 593 : 177 - 200
  • [44] DEGAN: Decentralized generative adversarial networks
    Faezi, Mohammad Hashem
    Bijani, Shahriar
    Dolati, Ardeshir
    NEUROCOMPUTING, 2021, 419 : 335 - 343
  • [45] Icon Generation Based on Generative Adversarial Networks
    Yang, Hongyi
    Xue, Chengqi
    Yang, Xiaoying
    Yang, Han
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [46] Visual Prediction of Typhoon Clouds With Hierarchical Generative Adversarial Networks
    Li, Hui
    Gao, Song
    Liu, Guiyan
    Guo, Donglin
    Grecos, Christos
    Ren, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1478 - 1482
  • [47] Vehicle Lane-Change Trajectory Prediction Model Based on Generative Adversarial Networks
    Wen H.
    Zhang W.
    Zhao S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (05): : 32 - 40
  • [48] Essential Protein Prediction Based on Shuffled Frog-Leaping Algorithm
    YANG, Xiaoqin
    Lei, Xiujuan
    ZHAO, Jie
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (04) : 704 - 711
  • [49] De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update
    Lin, Eugene
    Lin, Chieh-Hsin
    Lane, Hsien-Yuan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (04) : 761 - 774
  • [50] Traffic Prediction in Optical Networks Using Graph Convolutional Generative Adversarial Networks
    Vinchoff, C.
    Chung, N.
    Gordon, T.
    Lyford, L.
    Aibin, M.
    2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020), 2020,