Detecting plant diseases is vital for maintaining agricultural productivity and ensuring food security. Advances in computer vision, particularly with Vision Transformers (ViTs), have shown significant potential in improving the accuracy and efficiency of plant disease identification. This study provides a comprehensive evaluation of various ViT parameters to determine the most effective configuration for this purpose. Using the extensive PlantVillage dataset, we systematically analyzed the effects of patch sizes, image resolutions, embedding dimensions, the number of transformer blocks (depth), the number of heads in the multi-head attention layer, and the dimension of the MLP (FeedForward) layer on model performance. We introduced saliency map visualizations to enhance interpretability and evaluate the critical regions contributing to classification decisions, ensuring the approach's transparency and robustness. Our experiments identified the optimal ViT configuration as follows: image size = 224 x 224, patch size = 16, embedding dimension = 512, depth = 6, number of heads = 8, and MLP dimension = 1024. This configuration achieved an impressive accuracy of 99.77% on the PlantVillage dataset. In addition, we incorporated a novel cross-dataset transferability evaluation to validate the generalizability of the proposed model. Comparative analysis with traditional convolutional neural network architectures, such as VGG19 and AlexNet, revealed that our optimized ViT model not only surpasses these models in accuracy but also requires significantly fewer trainable parameters and storage space. The incorporation of a lightweight, domain-specific fine-tuning process ensures the model's adaptability to new datasets with minimal computational overhead. Our findings highlight the scalability and adaptability of ViTs, emphasizing their ability to effectively handle varying image sizes and resolutions. Moreover, our approach outperforms recent state-of-the-art methods across multiple databases, underscoring the efficacy of the chosen ViT parameters.