Improved Deep Learning Structure with Lightweight Depthwise Convolutions for Human Activity Recognition

被引:0
|
作者
Jang, Seoungwoo [1 ]
Jung, Im Y. [2 ]
机构
[1] Kyungpook Natl Univ, Sch Elect Engn, Daegu, South Korea
[2] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Deep Learning; Depthwise Convolution; Depthwise Mix Kernel Convolution; Human Activity Recognition; Lightweight Model for IoT Devices; FRAMEWORK;
D O I
10.22967/HCIS.2025.15.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human activity recognition (HAR) entails analyzing and interpreting data to infer human activity accurately. Convolution neural network deep learning techniques detect and classify human activity. However, convolutional layers in deep learning models typically have many parameters and floating-point operations per second, posing a challenge for real-time inference on Internet of Things (IoT) devices suitable for HAR due to their continuous data collection. This study addresses this problem by introducing a lightweight, depthwise residual network squeeze-and-excitation (ResNet-SE) model for HAR. The proposed model independently considers the spatial and channel data characteristics by employing depthwise convolutions, enabling efficient calculations. Extensive performance evaluation experiments were conducted on three public datasets for HAR (i.e., WISDM, UCIHAR, and PAMAP2). The best results surpassed those of state-of-the-art models in HAR, revealing accuracy values of 0.945 with 61,298 parameters and a 3.54-second inference time on the WISDM dataset, 0.997 with 60,134 parameters and a 0.47-second inference time on the UCI-HAR dataset, and 0.974 with 61,004 parameters and a 0.347-second inference time on the PAMAP2 dataset. The proposed model trained on the PAMAP2 dataset was deployed in an IoT device environment, and tests were conducted using experimental data. The results demonstrate that the proposed model exhibits fast inference times and lower energy consumption, and CPU use even in IoT devices. It achieves higher accuracy with actual data, highlighting its suitability for IoT environments. The results demonstrate that the proposed lightweight and highly practical model displays superior activity detection capabilities compared to existing models.
引用
收藏
页码:15 / 20
页数:21
相关论文
共 50 条
  • [31] Egocentric Vision for Human Activity Recognition Using Deep Learning
    Douache, Malika
    Benmoussat, Badra Nawal
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (06): : 730 - 744
  • [32] Deep Reinforcement Learning in Human Activity Recognition: A Survey and Outlook
    Nikpour, Bahareh
    Sinodinos, Dimitrios
    Armanfard, Narges
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [33] Improved Coyote Optimization Algorithm and Deep Learning Driven Activity Recognition in Healthcare
    Alazwari, Sana
    Eltahir, Majdy M.
    Almalki, Nabil Sharaf
    Alzahrani, Abdulrahman
    Alnfiai, Mrim M.
    Salama, Ahmed S.
    IEEE ACCESS, 2024, 12 : 22158 - 22166
  • [34] Human Gait Recognition Using Deep Learning and Improved Ant Colony Optimization
    Khan, Awais
    Khan, Muhammad Attique
    Javed, Muhammad Younus
    Alhaisoni, Majed
    Tariq, Usman
    Kadry, Seifedine
    Choi, Jung-In
    Nam, Yunyoung
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 2113 - 2130
  • [35] Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition
    Ding, Renjie
    Li, Xue
    Nie, Lanshun
    Li, Jiazhen
    Si, Xiandong
    Chu, Dianhui
    Liu, Guozhong
    Zhan, Dechen
    SENSORS, 2019, 19 (01)
  • [36] Human Activity Recognition in Smart Home using Deep Learning Models
    Diallo, Abdoulaye
    Diallo, Cherif
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1511 - 1515
  • [37] Physiotherapy-based human activity recognition using deep learning
    Deotale, Disha
    Verma, Madhushi
    Suresh, P.
    Kumar, Neeraj
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15) : 11431 - 11444
  • [38] Human Activity Recognition via Hybrid Deep Learning Based Model
    Khan, Imran Ullah
    Afzal, Sitara
    Lee, Jong Weon
    SENSORS, 2022, 22 (01)
  • [39] Human activity recognition using marine predators algorithm with deep learning
    Helmi, Ahmed M.
    Al-qaness, Mohammed A. A.
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 142 : 340 - 350
  • [40] Margin-Based Deep Learning Networks for Human Activity Recognition
    Lv, Tianqi
    Wang, Xiaojuan
    Jin, Lei
    Xiao, Yabo
    Song, Mei
    SENSORS, 2020, 20 (07)