Decadal Dynamics of Rangeland Cover Using Remote Sensing and Machine Learning Approach

被引:0
|
作者
Yang, Yujing [1 ]
Li, Zhiming [1 ]
Quddoos, Abdul [2 ,3 ]
Aslam, Rana Waqar [2 ]
Naz, Iram [2 ]
Khalid, Muhammad Burhan [4 ]
Afzal, Zohaib [2 ]
Liaquat, Muhammad Azeem [5 ]
Abdullah-Al-Wadud, M. [6 ]
机构
[1] Southwest Petr Univ, Sch Civil Engn & Geomat, Nanchong 637001, Sichuan, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[3] Environm Protect Agcy Punjab, Lahore 54000, Pakistan
[4] Nanjing Univ Informat Sci & Technol, Dept Atmospher Remote Sensing & Atmospher Sounding, Nanjing 210044, Peoples R China
[5] Univ Punjab, Dept Space Sci, Lahore 54000, Pakistan
[6] King Saud Univ, Coll Comp & Informat Sci, Dept Software Engn, Riyadh 11543, Saudi Arabia
关键词
Rangeland degradation; Remote Sensing; Machine learning; ecological city construction; Land cover change; CLIMATE-CHANGE; VEGETATION; ADAPTATION; NORTH;
D O I
10.1016/j.rama.2025.02.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Rangeland degradation in arid and semi-arid regions poses significant environmental and socioeconomic challenges globally. This study aims to assess the Spatio-temporal dynamics of rangeland changes in Khushab district, Pakistan, between 20 0 0 and 2020 by developing an integrated approach combining remote sensing, vegetation indices, and machine learning techniques. The specific objectives were to: (1) quantify rangeland extent changes using multi-temporal Landsat imagery, (2) evaluate rangeland health through multiple vegetation indices, and (3) analyze the primary drivers of rangeland transformation. The methodology integrated Landsat-derived land use land cover (LULC) classification using Random Forest and SMILE CART algorithms, analysis of six vegetation indices (NDVI, GNDVI, SAVI, EVI, ARVI), and land surface temperature (LST) assessment. The classification accuracy exceeded 90% for Random Forest and 87% for SMILE CART across all time periods. Results revealed significant rangeland degradation, with area declining from 9% to 6% of total land between 20 0 0 and 2020. Cropland expansion was the primary driver, increasing from 16% to 29% and converting 218 sq km of rangeland. Vegetation indices showed stable NDVI but declining GNDVI maximums from 0.37 to 0.36, indicating deteriorating plant health. Rising minimum LST from 27.82 degrees C to 31.81 degrees C suggested increasing heat stress on vegetation. This research demonstrates the effectiveness of integrating multiple remote sensing approaches with machine learning for comprehensive rangeland monitoring. The findings provide crucial baseline data for evidence- based policy making and sustainable rangeland management in Pakistan's semi-arid regions. Future work should incorporate ground validation and socioeconomic surveys to better understand degradation drivers and develop targeted conservation strategies. (c) 2025 The Society for Range Management. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Machine learning in geosciences and remote sensing
    David JLary
    Amir HAlavi
    Amir HGandomi
    Annette LWalker
    Geoscience Frontiers, 2016, 7 (01) : 3 - 10
  • [42] Machine learning in geosciences and remote sensing
    Lary, David J.
    Alavi, Amir H.
    Gandomi, Amir H.
    Walker, Annette L.
    GEOSCIENCE FRONTIERS, 2016, 7 (01) : 3 - 10
  • [43] Machine learning in geosciences and remote sensing
    David J.Lary
    Amir H.Alavi
    Amir H.Gandomi
    Annette L.Walker
    Geoscience Frontiers, 2016, (01) : 3 - 10
  • [44] Assessing long-term water storage dynamics in Afghanistan: An integrated approach using machine learning, hydrological models, and remote sensing
    Azizi, Abdul Haseeb
    Akhtar, Fazlullah
    Tischbein, Bernhard
    Borgemeister, Christian
    Wang, Qiuyu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 370
  • [45] Monitoring and Forecasting Land Cover Dynamics Using Remote Sensing and Geospatial Technology
    Vitale, Alessandro
    Salvo, Carolina
    GEOMATICS FOR ENVIRONMENTAL MONITORING: FROM DATA TO SERVICES, ASITA 2023, 2024, 2088 : 126 - 140
  • [46] Editorial: Advancements in land cover classification and machine learning techniques for Urban areas using remote sensing big data
    Al-Najjar, Husam
    Kalantar, Bahareh
    Abdul Halin, Alfian
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2025, 13
  • [47] Estimating fractional cover of crop, crop residue, and soil in cropland using broadband remote sensing data and machine learning
    Yue, Jibo
    Tian, Qingjiu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 89
  • [48] MONITORING FORAGE PRODUCTION IN RANGELAND USING REMOTE SENSING OBSERVATIONS
    Jin, Yufang
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3555 - 3556
  • [49] Global marine phytoplankton dynamics analysis with machine learning and reanalyzed remote sensing
    Adhikary, Subhrangshu
    Tiwari, Surya Prakash
    Banerjee, Saikat
    Dwivedi, Ashutosh Dhar
    Rahman, Syed Masiur
    PEERJ, 2024, 12
  • [50] Cover Crop Biomass Predictions with Unmanned Aerial Vehicle Remote Sensing and TensorFlow Machine Learning
    Poudel, Aakriti
    Burns, Dennis
    Adhikari, Rejina
    Duron, Dulis
    Hendrix, James
    Gentimis, Thanos
    Tubana, Brenda
    Setiyono, Tri
    DRONES, 2025, 9 (02)