Nanozymes, as innovative enzyme mimics, hold significant promise for wound care, including antibacterial properties and tissue regeneration. Given their potential to transform wound management, this study utilizes advanced bibliometric tools to provide a comprehensive analysis of the nanozyme research landscape. The analysis covers various aspects, including publication trends, institutional contributions, journal coverage, and author involvement, offering a holistic view of research dynamics. It reveals the evolution of nanozyme research across different phases of wound healing by examining keyword co-occurrence frequencies and timeline developments. In addition, the study identifies emerging research clusters within these phases, focusing on three key areas: enhancing nanozyme performance, integrating them with hydrogel matrices, and developing responsiveness to external stimuli. These clusters highlight the increasing sophistication and diversity of nanozyme-based solutions for wound care. Furthermore, the study explores the intersection of nanozyme research with artificial intelligence (AI) and wearable sensors. This integration presents unprecedented opportunities for real-time monitoring, personalized treatment plans, and predictive analytics in wound care. The findings indicate a growing interest in this interdisciplinary field, pinpointing research frontiers centered around AI-driven wound assessment, continuous monitoring through wearable technologies, and the application of AI algorithms in nanozyme-based wound dressings. In summary, this bibliometric study provides a comprehensive global overview of research trends, key literature, hotspots, and emerging frontiers in nanozyme-based wound care. By investigating the synergy between AI, wearable sensors, and nanozymes, it elucidates the potential for novel and personalized treatment strategies in this rapidly advancing field.