Maximal numerical range of tensor product of two operators

被引:0
|
作者
Taki, Zakaria [1 ]
Moktafi, Houda [2 ]
机构
[1] Univ Mohammed V Rabat, ENS Rabat, Rabat, Morocco
[2] Ibnou Zohr Univ, Fac Sci, Dept Math, Lab Math & Applicat, Agadir, Morocco
关键词
Bounded linear operators; maximal numerical range; tensor product; hyponormal operators; convex hull; dilation;
D O I
10.1080/03081087.2025.2464640
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be two operators acting on two complex Hilbert spaces $ \mathscr {H} $ H and $ \mathscr {K} $ K, respectively. In this paper, we show under some hyponormality conditions, the following equality $$\begin{align*} W_{0}(A\otimes B) = \mathrm{co}\left( W_{0}(A) \cdot W_{0}(B) \right) \end{align*}$$W0(A circle times B)=co(W0(A)& sdot;W0(B)) holds, where $ A\otimes B $ A circle times B, $ W_{0}(\cdot ) $ W0(& sdot;) and $ \mathrm {co}(\cdot ) $ co(& sdot;) denote respectively the tensor product of A and B, the maximal numerical range and convex hull. Furthermore, we provide a necessary and sufficient condition for the operator $ A\otimes B $ A circle times B being hyponormal.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Numerical range, dilation, and maximal operator systems
    Li, Chi-Kwong
    Loon, Yiu-Tung
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 681 - 696
  • [22] Maximal numerical ranges of certain classes of operators and approximation
    Dou, Rui
    Ji, Youqing
    Zhu, Sen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)
  • [23] Meshless numerical method based on tensor product
    Sun H.
    Wang Y.
    Miao Y.
    Frontiers of Architecture and Civil Engineering in China, 2008, 2 (2): : 166 - 171
  • [24] Numerical range, dilation, and maximal operator systems
    Chi-Kwong Li
    Yiu-Tung Poon
    Acta Scientiarum Mathematicarum, 2020, 86 : 681 - 696
  • [25] Some numerical radius inequalities for tensor products of operators
    Aici, Soumia
    Frakis, Abdelkader
    Kittaneh, Fuad
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3543 - 3556
  • [26] The maximal quantum group-twisted tensor product of C*-algebras
    Roy, Sutanu
    Timmermann, Thomas
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (01) : 279 - 330
  • [27] Multiplicatively maximal numerical range-preserving maps
    Bourhim, Abdellatif
    Mabrouk, Mohamed
    QUAESTIONES MATHEMATICAE, 2025,
  • [28] Maps preserving maximal numerical range of operator products
    Dhifaoui, K.
    Mabrouk, M.
    QUAESTIONES MATHEMATICAE, 2024, 47 (05) : 971 - 981
  • [29] MAXIMAL NUMERICAL RANGE AND QUADRATIC ELEMENTS IN A C* -ALGEBRA
    Benabdi, E. H.
    Barraa, M.
    Chraibi, M. K.
    Baghdad, A.
    OPERATORS AND MATRICES, 2021, 15 (04): : 1477 - 1487
  • [30] MIONET: LEARNING MULTIPLE-INPUT OPERATORS VIA TENSOR PRODUCT
    Jin, Pengzhan
    Meng, Shuai
    Lu, Lu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (06) : A3490 - A3514