共 50 条
A Categorical Characterization of Quantum Projective Z- spaces
被引:0
|作者:
Mori, Izuru
[1
]
Nyman, Adam
[2
]
机构:
[1] Shizuoka Univ, Fac Sci, Dept Math, Shizuoka 4228529, Japan
[2] Western Washington Univ, Dept Math, 516 High St, Bellingham, WA 98225 USA
基金:
日本学术振兴会;
关键词:
ALGEBRAS;
D O I:
10.1007/s10485-025-09806-2
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we study a generalization of the notion of AS-regularity for connected Zalgebras defined in Mori and Nyman (J Pure Appl Algebra, 225(9), 106676, 2021). Our main result is a characterization of those categories equivalent to noncommutative projective schemes associated to right coherent regular Z-algebras, which we call quantum projective Z-spaces in this paper. As an application, we show that smooth quadric hypersurfaces and the standard noncommutative smooth quadric surfaces studied in Smith and Van den Bergh (J Noncommut Geom 7(3), 817-856, 2013) , Mori and Ueyama (J Noncommut Geom, 15(2), 489-529, 2021) have right noetherian AS-regular Z-algebras as homogeneous coordinate algebras. In particular, the latter are thus noncommutative P-1 x P-1 [in the sense of Van den Bergh (Int Math Res Not 17:3983-4026, 2011)].
引用
收藏
页数:46
相关论文