COUNTABLY COMPACT EXTENSIONS AND CARDINAL CHARACTERISTICS OF THE CONTINUUM

被引:0
作者
Bardyla, Serhii [1 ]
Nyikos, Peter [2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ South Carolina, Dept Math, Columbia, SC USA
[3] Vienna Univ Technol TU WIEN, Inst Discrete Math & Geometry, Vienna, Austria
关键词
Nyikos space; countably compact; pseudocompact; embedding; cardinal characteristics of the continuum; SPACES;
D O I
10.1017/jsl.2025.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the existence of certain first-countable compact-like extensions is equivalent to the equality between corresponding cardinal characteristics of the continuum. For instance, b= s= c if and only if every regular first-countable space of weight < c can be densely embedded into a regular first-countable countably compact space.
引用
收藏
页数:27
相关论文
共 35 条
[1]   On Jakovlev spaces [J].
Abraham, Uri ;
Gorelic, Isaac ;
Juhasz, Istvan .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 152 (1) :205-219
[2]  
Bardyla S, 2021, ACTA MATH HUNG, V163, P323, DOI 10.1007/s10474-020-01082-x
[3]  
Bardyla S, 2024, Arxiv, DOI arXiv:2301.08704
[4]   ON REGULAR SEPARABLE COUNTABLY COMPACT R-RIGID SPACES [J].
Bardyla, Serhii ;
Zdomskyy, Lyubomyr .
ISRAEL JOURNAL OF MATHEMATICS, 2023, 255 (02) :783-810
[5]   1ST COUNTABLE PSEUDOCOMPACTIFICATIONS [J].
BELL, MG .
TOPOLOGY AND ITS APPLICATIONS, 1985, 21 (02) :159-166
[6]  
Brendle J, 1999, T AM MATH SOC, V351, P2643
[7]  
Bukovsk L., 2011, The Structure of the Real Line
[8]   HEREDITARILY NORMAL MANIFOLDS OF DIMENSION GREATER THAN ONE MAY ALL BE METRIZABLE [J].
Dow, Alan ;
Tall, Franklin D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) :6805-6851
[9]   Countable π-character, countable compactness and PFA [J].
Dow, Alan .
TOPOLOGY AND ITS APPLICATIONS, 2018, 239 :25-34
[10]   PFA(S) [S] and countably compact spaces [J].
Dow, Alan ;
Tall, Franklin D. .
TOPOLOGY AND ITS APPLICATIONS, 2017, 230 :393-416