共 50 条
Evaluation of Sb/Bi heterostructure as anode material for Li/Na/K-ion intercalation batteries: A DFT study
被引:0
|作者:
Anwar, Maida
[1
]
Durrani, Mamoona
[2
]
Buzdar, Saeed Ahmad
[3
]
Majid, Abdul
[4
]
Alarfaji, Saleh S.
[5
,6
]
Khan, Muhammad Isa
[2
]
机构:
[1] Univ Padua, Dept Phys & Astron Galileo Galilei, Via 8 Febbraio 2, I-35122 Padua, Italy
[2] Islamia Univ Bahawalpur, Dept Phys, Rahim Yar Khan Campus, Bahawalpur, Pakistan
[3] Islamia Univ Bahawalpur, Inst Phys, Bagdad Ul Jadeed Campus, Bahawalpur, Pakistan
[4] Univ Gujrat, Dept Phys, Gujrat, Pakistan
[5] King Khalid Univ, Fac Sci, Dept Chem, POB 9004, Abha 61413, Saudi Arabia
[6] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
关键词:
Heterostructure;
Adsorption energy;
Open circuit voltage;
PROMISING ANODE;
THEORETICAL PREDICTION;
LITHIUM;
LI;
ANTIMONENE;
CAPACITY;
NA;
PHOSPHORENE;
CAPABILITY;
BOROPHENE;
D O I:
10.1016/j.comptc.2025.115088
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The Sb/Bi heterostructure, a central focus in advanced metal-ion (AM) battery research, stands out for its substantial surface area and impressive capacity. Using density functional theory, we identify it as a highly promising anode material for lithium-, sodium-, and potassium-ion batteries. Our calculations demonstrate stable adherence of Li, Na, and K atoms to the Sb/Bi surface, with adsorption energies of-1.71 eV,-1.92 eV, and-2.4 eV, respectively, indicating favorable stability during the lithiation, sodiation, and potassiation processes. Incorporating Sb/Bi in electrodes displays exceptional conductivity, resulting in a lower anode voltage and good capacity. Theoretical capacities are 2106, 88.63, and 113.95 mAh/g for Li, Na, and K batteries. Notably, the Sb/ Bi heterostructure exhibits thermal stability and metallic behavior. Open circuit voltage (OCV) values recorded for Li, Na, and K ions on the Sb/Bi heterostructure are 0.14 V, 0.20 V, and 0.17 V, respectively. Hirschfeld charge analysis provides insights into charge distribution, contributing to the understanding of Sb/Bi electrochemical behavior. This study highlights the potential of Sb/Bi heterojunctions, offering improved electrochemical performance and innovative pathways for experimental synthesis in the realm of advanced metal-ion batteries.
引用
收藏
页数:11
相关论文