共 25 条
The non-orientable 4-genus of 11 crossing non-alternating knots
被引:0
|作者:
Fairchild, Megan
[1
]
机构:
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70802 USA
关键词:
Topology;
knot theory;
non-orientable;
4-genus;
crosscap number;
prime knots;
non-oriented band move;
slice knots;
double branched cover;
arf invariant;
knot signature Goeritz matrix;
checkerboard coloring;
non-alternating knots;
linking form;
NUMBER;
D O I:
10.1142/S0218216524500500
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The non-orientable 4-genus of a knot K in S3 is defined to be the minimum first Betti number of a non-orientable surface F smoothly embedded in B4 so that K bounds F. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a M & ouml;bius band given by the double branched cover of S3 branched over K.
引用
收藏
页数:26
相关论文