NH3-Induced Challenges in CO2 Hydrogenation over the Cu/ZnO/Al2O3 Catalyst

被引:2
作者
Bie, Xuan [1 ]
Pan, Yukun [2 ]
Wang, Xiaowei [2 ]
Zhang, Shiyu [1 ]
Hu, Jiahui [3 ]
Yang, Xiaoxiao [1 ]
Li, Qinghai [1 ,4 ]
Zhang, Yanguo [1 ,4 ]
Przekop, Robert E. [5 ]
Zhang, Yayun [2 ]
Zhou, Hui [1 ,4 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, Beijing Key Lab CO2 Utilizat & Reduct Technol, Key Lab Thermal Sci & Power Engn,Minist Educ, Beijing 100084, Peoples R China
[2] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[3] New Jersey Inst Technol, Newark, NJ 07102 USA
[4] Tsinghua Univ, Shanxi Res Inst Clean Energy, Taiyuan 030000, Shanxi, Peoples R China
[5] Adam Mickiewicz Univ, PL-61712 Poznan, Poland
来源
JACS AU | 2025年 / 5卷 / 03期
基金
中国国家自然科学基金; 北京市自然科学基金; 国家重点研发计划;
关键词
CO2; hydrogenation; impurity; deactivation; RWGS reaction; the role of NH3; NH3; decomposition; CONTACT QUANTIFICATION MODEL; CU-ZNO SYNERGY; METHANOL SYNTHESIS; INFRARED-SPECTROSCOPY; ACTIVE-SITE; AMMONIA; ENERGY; GAS; SELECTIVITIES; DECOMPOSITION;
D O I
10.1021/jacsau.4c01097
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gas sources rich in CO2 derived from biomass/waste gasification, anaerobic digestion, or industrial carbon capture often contain impurities such as H2S, H2O, and NH3, which can significantly hinder catalyst performance. Here, we show the role of NH3 on the reverse water-gas shift (RWGS) reaction over a commercial Cu/ZnO/Al2O3 catalyst, examining its effects on both the catalytic activity and the catalyst structure. We found that NH3 reversibly decreases CO2 conversion immediately by suppressing carbonate hydrogenation and CO desorption. This effect intensifies with an increase in NH3 concentration but decreases at higher temperatures. However, prolonged exposure (over 100 h) to RWGS conditions in the presence of 1.4% NH3 leads to near-total and irreversible deactivation of the Cu/ZnO/Al2O3 catalyst. Under NH3 exposure, the catalyst loses Cu+ sites on the surface, causing a spatial separation of Cu and ZnO. Finally, to address this challenge, we propose a novel strategy to mitigate NH3 inhibition by decomposing NH3 into N-2 and H-2.
引用
收藏
页码:1243 / 1257
页数:15
相关论文
共 88 条
[1]   The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst [J].
Amann, Peter ;
Kloetzer, Bernhard ;
Degerman, David ;
Koepfle, Norbert ;
Goetsch, Thomas ;
Loemker, Patrick ;
Rameshan, Christoph ;
Ploner, Kevin ;
Bikaljevic, Djuro ;
Wang, Hsin-Yi ;
Soldemo, Markus ;
Shipilin, Mikhail ;
Goodwin, Christopher M. ;
Gladh, Joergen ;
Stenlid, Joakim Halldin ;
Boerner, Mia ;
Schlueter, Christoph ;
Nilsson, Anders .
SCIENCE, 2022, 376 (6593) :603-+
[2]   Net-zero carbon pledges must be meaningful [J].
不详 .
NATURE, 2021, 592 (7852) :8-8
[3]   Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol [J].
Arandia, Aitor ;
Yim, Jihong ;
Warraich, Hassaan ;
Leppakangas, Emilia ;
Bes, Rene ;
Lempelto, Aku ;
Gell, Lars ;
Jiang, Hua ;
Meinander, Kristoffer ;
Viinikainen, Tiia ;
Huotari, Simo ;
Honkala, Karoliina ;
Puurunen, Riikka L. .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
[4]   Biomass gasification gas cleaning for downstream applications: A comparative critical review [J].
Asadullah, Mohammad .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 40 :118-132
[5]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[6]   Further insights into the effect of sulfur on the activity and selectivity of cobalt-based Fischer-Tropsch catalysts [J].
Barrientos, J. ;
Montes, V. ;
Boutonnet, M. ;
Jaras, S. .
CATALYSIS TODAY, 2016, 275 :119-126
[7]   Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies [J].
Beale, Andrew M. ;
Gibson, Emma K. ;
O'Brien, Matthew G. ;
Jacques, Simon D. M. ;
Cernik, Robert J. ;
Di Michiel, Marco ;
Cobden, Paul D. ;
Pirgon-Galin, Ozlem ;
van de Water, Leon ;
Watson, Michael J. ;
Weckhuysen, Bert M. .
JOURNAL OF CATALYSIS, 2014, 314 :94-100
[8]   Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation [J].
Beck, Arik ;
Zabilskiy, Maxim ;
Newton, Mark A. ;
Safonova, Olga ;
Willinger, Marc G. ;
van Bokhoven, Jeroen A. .
NATURE CATALYSIS, 2021, 4 (06) :488-497
[9]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[10]   Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures [J].
Bhardwaj, Richa ;
Bharti, Amardeep ;
Singh, Jitendra P. ;
Chae, Keun H. ;
Goyal, Navdeep .
NANOSCALE ADVANCES, 2020, 2 (10) :4450-4463