Genetic Architecture of the Thermal Tolerance Landscape in Drosophila melanogaster

被引:0
|
作者
Soto, Juan [1 ]
Pinilla, Francisco [1 ]
Olguin, Patricio [1 ,2 ]
Castaneda, Luis E. [1 ,3 ]
机构
[1] Univ Chile, Fac Med, Inst Biomed Sci, Program Human Genet, Santiago, Chile
[2] Univ Chile, Fac Med, Dept Neurosci, Santiago, Chile
[3] Res Ring Pest Insects & Climate Change PIC2, Santiago, Chile
关键词
genetic correlation; genotype-by-environment interaction; genotype-by-sex interaction; heat tolerance; heritability; TDT curves; HSR-OMEGA GENE; HEAT TOLERANCE; CLIMATE-CHANGE; LIMITS DEPEND; EVOLUTIONARY; SELECTION; THERMOTOLERANCE; TEMPERATURES; POPULATIONS; RESISTANCE;
D O I
10.1111/mec.17697
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increased environmental temperatures associated with global warming strongly impact natural populations of ectothermic species. Therefore, it is crucial to understand the genetic basis and evolutionary potential of heat tolerance. However, heat tolerance and its genetic components depend on the methodology, making it difficult to predict the adaptive responses to global warming. Here, we measured the knockdown time for 100 lines from the Drosophila Genetic Reference Panel (DGRP) at four different static temperatures, and we estimated their thermal-death-time (TDT) curves, which incorporate the magnitude and the time of exposure to thermal stress, to determine the genetic basis of the thermal tolerance landscape. Through quantitative genetic analyses, the knockdown time showed a significant heritability at different temperatures and that its genetic correlations decreased as temperatures differences increased. Significant genotype-by-sex and genotype-by-environment interactions were noted for heat tolerance. We also discovered genetic variability for the two parameters of TDT: CTmax and thermal sensitivity. Taking advantage of the DGRP, we performed a GWAS and identified multiple variants associated with the TDT parameters, which mapped to genes related to signalling and developmental functions. We performed functional validations for some candidate genes using RNAi, which revealed that genes such as mam, KNCQ, or robo3 affect the knockdown time at a specific temperature but are not associated with the TDT parameters. In conlusion, the thermal tolerance landscape display genetic variation and plastic responses, which may facilitate the adaptation of Drosophila populations to a changing world.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GENETIC ARCHITECTURE OF TOLERANCE TO ACROLEIN IN DROSOPHILA-MELANOGASTER
    COMENDADOR, MA
    SIERRA, LM
    GONZALEZ, M
    GENETICS SELECTION EVOLUTION, 1989, 21 (04) : 415 - 425
  • [2] Genetic mechanisms of basal thermal tolerance in Drosophila melanogaster
    Awde, D. N.
    Lecheta, M. C.
    Unfried, L. N.
    Jacobs, N. A.
    Powers, B.
    Bora, K.
    Waters, J. S.
    Axen, H. J.
    Frietze, S. E.
    Lockwood, B. L.
    Cahan, S. H.
    Teets, N. M.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2020, 60 : E8 - E8
  • [3] The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster
    Howick, Virginia M.
    Lazzaro, Brian P.
    MOLECULAR ECOLOGY, 2017, 26 (06) : 1533 - 1546
  • [4] THE GENETIC ARCHITECTURE OF COLD TOLERANCE IN NATURAL-POPULATIONS OF DROSOPHILA-MELANOGASTER AND DROSOPHILA-SIMULANS
    DAVIDSON, JK
    AUSTRALIAN JOURNAL OF ZOOLOGY, 1990, 38 (02) : 163 - 171
  • [5] Genetic control of cadmium tolerance in Drosophila melanogaster
    Maroni, G
    Ho, AS
    Laurent, T
    ENVIRONMENTAL HEALTH PERSPECTIVES, 1995, 103 (12) : 1116 - 1118
  • [6] Genetic variation of macronutrient tolerance in Drosophila melanogaster
    Havula, E.
    Ghazanfar, S.
    Lamichane, N.
    Francis, D.
    Hasygar, K.
    Liu, Y.
    Alton, L. A.
    Johnstone, J.
    Needham, E. J.
    Pulpitel, T.
    Clark, T.
    Niranjan, H. N.
    Shang, V
    Tong, V
    Jiwnani, N.
    Audia, G.
    Alves, A. N.
    Sylow, L.
    Mirth, C.
    Neely, G. G.
    Yang, J.
    Hietakangas, V
    Simpson, S. J.
    Senior, A. M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Genetic variation of macronutrient tolerance in Drosophila melanogaster
    E. Havula
    S. Ghazanfar
    N. Lamichane
    D. Francis
    K. Hasygar
    Y. Liu
    L. A. Alton
    J. Johnstone
    E. J. Needham
    T. Pulpitel
    T. Clark
    H. N. Niranjan
    V. Shang
    V. Tong
    N. Jiwnani
    G. Audia
    A. N. Alves
    L. Sylow
    C. Mirth
    G. G. Neely
    J. Yang
    V. Hietakangas
    S. J. Simpson
    A. M. Senior
    Nature Communications, 13
  • [8] Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster
    Dembeck, Lauren M.
    Huang, Wen
    Magwire, Michael M.
    Lawrence, Faye
    Lyman, Richard F.
    Mackay, Trudy F. C.
    PLOS GENETICS, 2015, 11 (05):
  • [9] Dissecting the genetic architecture of behavior in Drosophila melanogaster
    Anholt, Robert R. H.
    Mackay, Trudy F. C.
    CURRENT OPINION IN BEHAVIORAL SCIENCES, 2015, 2 : 1 - 7
  • [10] Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system
    Williams-Simon, Patricka A.
    Oster, Camille
    Moaton, Jordyn A.
    Ghidey, Ronel
    Ng'oma, Enoch
    Middleton, Kevin M.
    King, Elizabeth G.
    GENETICS, 2024, 227 (01)