OPTICAL ANALYSIS AND OPTIMIZATION OF A NEW RECEIVER FOR SOLAR PARABOLIC TROUGH COLLECTORS (DETECTIVE)

被引:0
作者
Ebadi, Hossein [1 ]
Alarcon-Padilla, Diego-Cesar [2 ]
Contreras Keegan, Juan Jose [3 ]
Guedez Mata, Rafael Eduardo [4 ]
Trevisan, Silvia [4 ]
Valenzuela Gutierrez, Loreto [2 ]
Zarza Moya, Eduardo [2 ]
Savoldi, Laura [1 ]
机构
[1] Politecn Torino, Dipartimento Energia Galileo Ferraris, Turin, Italy
[2] CIEMAT, Plataforma Solar Almeria, Tabernas, Spain
[3] Absolicon Solar Collector AB, Harnosand, Sweden
[4] KTH Royal Inst Technol, Energy Dept, Stockholm, Sweden
来源
PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024 | 2024年
关键词
PTC; Optical simulation; Ray tracing; SolTrace; Cavity linear; linear receiver tube; CAVITY-RECEIVER; THERMAL PERFORMANCE;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
DETECTIVE (Development of a novEl Tube-bundlE-CaviTy lInear receiVEr for CSP applications) is a project that aims at enhancing the overall performance of the current solar parabolic trough collectors. The proposed design focuses on improving such performance by substituting the traditional single metal absorber tube with a tubular bundle whose outer contour largely matches the outer circumference of the replaced tube. To assess the optical performance of the proposed receiver, a Monte Carlo ray tracing technique was employed by utilizing the SolTrace software. The effects of the two design parameters, such as cavity opening angle and cavity radius, on the overall optical behavior have been explored and the optimum design is determined with the maximum optical performance. The ray tracing data proved that the cavity-like space formed within the multi-tube arrangement results in a multi-reflection process between bundle tubes and could result in a higher ray absorption compared to the conventional design, leading to lower optical losses. The obtained numerical results indicated that an aperture angle of 60 degrees could provide the highest optical performance among the studied options. Considering the second parameter, the rise in the cavity radius is shown to increase the ray intersection inside the cavity, while the optical efficiency decreases. Finally, the most efficient design reaches an enhancement of 10% in optical efficiency if compared to the conventional PTC design.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors
    Li, Xueling
    Chang, Huawei
    Duan, Chen
    Zheng, Yao
    Shu, Shuiming
    APPLIED ENERGY, 2019, 237 : 431 - 439
  • [2] Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors
    Liang, Hongbo
    You, Shijun
    Zhang, Huan
    ENERGY, 2016, 96 : 37 - 47
  • [3] OPTICAL PERFORMANCE OF A NOVEL TUBE-BUNDLE CAVITY RECEIVER FOR SOLAR PARABOLIC TROUGH COLLECTORS
    Ebadi, Hossein
    Kamfiroozi, Shahdad
    Cammi, Antonio
    Savoldi, Laura
    PROCEEDINGS OF THE ASME 2022 POWER CONFERENCE, POWER2022, 2022,
  • [4] Daily performance of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    Belessiotis, Vassilis
    SOLAR ENERGY, 2017, 158 : 663 - 678
  • [5] An analysis of the heat loss and overheating protection of a cavity receiver with a novel movable cover for parabolic trough solar collectors
    Liang, Hongbo
    Fan, Man
    You, Shijun
    Xia, Junbao
    Zhang, Huan
    Wang, Yaran
    ENERGY, 2018, 158 : 719 - 729
  • [6] Study on the thermal performance of a novel cavity receiver for parabolic trough solar collectors
    Liang, Hongbo
    Zhu, Chunguang
    Fan, Man
    You, Shijun
    Zhang, Huan
    Xia, Junbao
    APPLIED ENERGY, 2018, 222 : 790 - 798
  • [7] Thermal performance analysis of novel receiver for parabolic trough solar collector
    Shinde, Tukaram U.
    Dalvi, Vishwanath H.
    Patil, Ramchandra G.
    Mathpati, Channamallikarjun S.
    V. Panse, Sudhir
    Joshi, Jyeshtharaj B.
    ENERGY, 2022, 254
  • [8] Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    RENEWABLE ENERGY, 2017, 114 : 1376 - 1393
  • [9] Alternative designs of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 71 : 81 - 117
  • [10] Numerical Study and Optimization of Parabolic Trough Solar Collector Receiver Tube
    Ghomrassi, Anissa
    Mhiri, Hatem
    Bournot, Philippe
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (05):