Energetic, exergetic, and entropy generation prediction and optimization of photovoltaic thermal system integrated hexagonal boron nitride-water nanofluid

被引:0
作者
Sofiah, A. G. N. [1 ]
Pandey, A. K. [2 ,3 ]
Rajamony, Reji Kumar [1 ,4 ]
Samykano, M. [5 ]
Pasupuleti, J. [1 ]
Sulaiman, Nur Fatin [6 ]
Saidur, R. [2 ]
机构
[1] Univ Tenaga Nas Energy Univ, Inst Sustainable Energy, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[2] Sunway Univ, Sch Sci & Technol, Res Ctr Nanomat & Energy Technol RCNMET, 5 Jalan Univ, Petaling Jaya 47500, Selangor Darul, Malaysia
[3] Chitkara Univ, Ctr Res Impact & Outcome, Rajpura 140417, Punjab, India
[4] Parul Univ, Fac Engn & Technol, Waghodiya Rd, Vadodara 391760, Gujarat, India
[5] Univ Malaysia Pahang Al Sultan Abdullah, Ctr Res Adv Fluid & Proc, Gambang 26300, Pahang, Malaysia
[6] Univ Tenaga Nas Energy Univ, Inst Informat & Comp Energy, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
关键词
Nanofluids; Photovoltaic thermal system; Optimization; RSM; Energy; Exergy; PERFORMANCE; PVT; EFFICIENCY;
D O I
10.1016/j.applthermaleng.2024.125356
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study investigates the performance and optimization of a photovoltaic thermal (PVT) system integrated with hexagonal boron nitride-water (hBN-water) nanofluid using a central composite design (CCD) of the response surface method (RSM). The research focuses on optimizing mass flow rate and irradiance to enhance electrical efficiency, thermal efficiency, electrical exergy efficiency, thermal exergy efficiency, and minimize entropy generation. ANOVA tables demonstrate the statistical significance of variables and their interactions, with high R-squared values of 98.27 %, 99.51 %, 99.86 %, 97.34 %, and 100 %, respectively, confirming the model's robustness. The actual vs. predicted graph aligns closely along the 45 degrees line, and the residual vs. predicted plot shows a random distribution of residuals, indicating reliable predictive performance and model resilience. The optimization results estimate an electrical efficiency of 7.72 % at a mass flow rate of 1.18 L/m and irradiance of 444.44 W/m2. Single-objective optimizations predict maximum thermal efficiency of 73.84 % at 0.63 L/m and 481.94 W/m2, maximum electrical exergy efficiency of 8.92 % at 0.62 L/m and 444.44 W/m2, maximum thermal exergy efficiency of 1.83 % at 0.84 L/m and 682.23 W/m2, and minimized entropy generation of 1.6 at 1.18 L/m and 444.44 W/m2. The ramp function plot for multi-objective optimization reveals the best overall performance at a mass flow rate of 0.62 L/m and irradiance of 492.22 W/m2, achieving electrical efficiency of 7.43 %, thermal efficiency of 73.82 %, electrical exergy efficiency of 8.56 %, thermal exergy efficiency of 1.21 %, and minimized entropy generation of 1.57. These research study aim to enhance the understanding, efficiency, and broader adoption of PVT technologies integrated with nanofluids, contributing to more sustainable renewable energy solutions.
引用
收藏
页数:22
相关论文
共 71 条
  • [1] Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)
    Abadeh, Abazar
    Rejeb, Oussama
    Sardarabadi, Mohammad
    Menezo, Christophe
    Passandideh-Fard, Mohammad
    Jemni, Abdelmajid
    [J]. ENERGY, 2018, 159 : 1234 - 1243
  • [2] Energy and exergy evaluation of a baffle d-nanofluid-base d photovoltaic thermal system (PVT)
    Ahmadinejad, Mehrdad
    Moosavi, Rouhollah
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 203
  • [3] Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: Indoor experimental tests and multi-objective optimization
    Akbar, Alireza
    Najafi, Gholamhassan
    Gorjian, Shiva
    Kasaeian, Alibakhsh
    Mazlan, Mohamed
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 46
  • [4] Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids
    Al-Shamani, Ali Najah
    Alghoul, M. A.
    Elbreki, A. M.
    Ammar, A. A.
    Abed, Azher M.
    Sopian, K.
    [J]. ENERGY, 2018, 145 : 770 - 792
  • [5] Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study
    Al-Waeli, Ali H. A.
    Sopian, K.
    Yousif, Jabar H.
    Kazem, Hussein A.
    Boland, John
    Chaichan, Miqdam T.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 186 : 368 - 379
  • [6] Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network
    Al-Waeli, Ali H. A.
    Sopian, K.
    Kazem, Hussein A.
    Yousif, Jabar H.
    Chaichan, Miqdam T.
    Ibrahim, Adnan
    Mat, Sohif
    Ruslan, Mohd Hafidz
    [J]. SOLAR ENERGY, 2018, 162 : 378 - 396
  • [7] An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system
    Al-Waeli, Ali H. A.
    Sopian, K.
    Chaichan, Miqdam T.
    Kazem, Hussein A.
    Hasan, Husam Abdulrasool
    Al-Shamani, Ali Najah
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2017, 142 : 547 - 558
  • [8] Unveiling the potential of solar cooling technologies for sustainable energy and environmental solutions
    Ali, Farooq H.
    Al-Amir, Qusay Rasheed
    Hamzah, Hameed K.
    Alahmer, Ali
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [9] Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems - A comprehensive review
    Ali, Hafiz Muhammad
    [J]. SOLAR ENERGY, 2020, 197 : 163 - 198
  • [10] Experimental and numerical study of a photovoltaic/thermal system cooled by metal oxide nanofluids
    Alktranee, Mohammed
    Al-Yasiri, Qudama
    Shehab, Mohammed Ahmed
    Bencs, Peter
    Nemeth, Zoltan
    Hernadi, Klara
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 94 : 55 - 67