A GLOBAL COMPACTNESS RESULT FOR QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV NONLINEARITIES AND HARDY POTENTIALS ON RN

被引:0
作者
Jin, Lingyu [1 ]
Wei, Suting [1 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
关键词
p-Laplacian; compactness; positive solution; unbounded domain; Sobolev nonlinearity; POSITIVE SOLUTIONS; EQUATIONS; MULTIPLICITY; BIFURCATION; PRINCIPLE; EXPONENTS;
D O I
10.58997/ejde.2024.79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the elliptic equation with critical Sobolev nonlinearity and Hardy potentials (-triangle)p(u )+ a(x)|u|(p-1)u - mu | u | (p - 1) u / | x | p = | u |( p & lowast; - 2) u + f(x, u), u is an element of W-1,W-p(R-N), where 0 < <mu> < min{ ( N - p ) /p(p ) , N (p- 1) ( N - p 2 )/ p p } , p & lowast; = Np/ N-p is the critical Sobolev exponent. Through a compactness analysis of the associated functional operator, we obtain the existence of positive solutions under certain assumptions on a(x) and f(x, u).
引用
收藏
页码:1 / 23
页数:23
相关论文
共 29 条
[1]  
Abdellaoui B., 2006, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., P445
[2]  
Alves CO, 2005, ELECTRON J DIFFER EQ
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A global compactness result for singular elliptic problems involving critical Sobolev exponent [J].
Cao, DM ;
Peng, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1857-1866
[5]   Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems [J].
Chen, Kuan-Ju ;
Peng, Chen-Chang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 240 (01) :58-91
[6]   On the existence of Lp solutions of the magnetohydrodynamic equations in a bounded domain [J].
Akiyama, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (06) :1165-1174
[7]   A Robin boundary problem with Hardy potential and critical nonlinearities [J].
Deng, Yinbin ;
Jin, Lingyu ;
Peng, Shuangjie .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1) :125-154
[8]   Solutions of Schrodinger equations with inverse square potential and critical nonlinearity [J].
Deng, Yinbin ;
Jin, Lingyu ;
Peng, Shuangjie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) :1376-1398
[9]   Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential [J].
Dipierro, Serena ;
Montoro, Luigi ;
Peral, Ireneo ;
Sciunzi, Berardino .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[10]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262