Wide Operating Range Bidirectional Impedance Control Network-based AC-DC Converter with Reactive Power Control

被引:0
作者
Gurara, Firehiwot [1 ]
Etta, Dheeraj [1 ]
Afridi, Khurram K. [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
来源
2024 IEEE 25TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS, COMPEL 2024 | 2024年
基金
美国国家科学基金会;
关键词
Impedance control network; resistance compression network; power factor correction; reactive power control; resonant converter; wide input voltage; wide output voltage; wide operating range; soft-switching; ac-dc converter; dc-ac converter; bidirectional ac-dc converter; phase-shift control; zero voltage switching; zero current switching; CHARGER;
D O I
10.1109/COMPEL57542.2024.10614029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a generalized control strategy for reactive power control of a high-performance bidirectional Impedance Control Network (ICN)-based AC-DC converter. This bidirectional ICN converter comprises a power combining and power splitting network, facilitating high-performance across wide voltage ranges, in forward and reverse operational modes respectively. A comprehensive phase-shift control strategy is proposed to enable bidirectional power flow and reactive power control. An auxiliary zero voltage switching (ZVS) inductor, in conjunction with the phase-shift control, is employed to achieve soft-switching. A design methodology to select optimal values for the transformer turns ratio, the ICN differential reactance, and the auxiliary ZVS inductor is also presented. The proposed control strategy is validated using a 1.7 kVA, universal input, 200-500 V output bidirectional ICN-based AC-DC converter. Experimental results demonstrate the operation of the converter with unity and lagging power factor.
引用
收藏
页数:6
相关论文
共 20 条
[1]  
Cesiel D, 2017, IEEE ELECTRIF MAG, V5, P36, DOI 10.1109/MELE.2016.2644265
[2]  
Cvetkovic Igor, 2009, Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009, P2675, DOI 10.1109/ECCE.2009.5316064
[3]   Transportation 2.0 [J].
Emadi, Ali .
IEEE POWER & ENERGY MAGAZINE, 2011, 9 (04) :18-29
[4]  
Etta D., 2023, P IEEE EN CONV C EXP
[5]  
Ferreira RJ, 2011, IEEE PES INNOV SMART
[6]   Single phase power factor correction:: A survey [J].
García, O ;
Cobos, JA ;
Prieto, R ;
Alou, P ;
Uceda, J .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2003, 18 (03) :749-755
[7]   The Path to a Vehicle-to-Grid Future: Powering Electric Mobility Forward [J].
Ghazanfari, Amin ;
Perreault, Christian .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2022, 16 (03) :4-13
[8]  
Gunter SJ, 2015, IEEE ENER CONV, P539, DOI 10.1109/ECCE.2015.7309736
[9]  
Gurara F., 2023, P IEEE EN CONV C EXP
[10]  
Gurara F., 2024, P IEEE APPL POW EL C