The uniqueness of minimizers for L2-subcritical inhomogeneous variational problems with a spatially decaying nonlinearity

被引:0
作者
Fu, Yunxia [1 ]
Liu, Xinji [2 ]
Wu, Shuang [2 ]
机构
[1] Natl Univ Def Technol, Coll Informat & Commun, Wuhan, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
关键词
L-2-subcritical variational problems; minimizers; spatially decaying nonlinearity; uniqueness; CONCENTRATION-COMPACTNESS PRINCIPLE; STANDING WAVES; SCHRODINGER-EQUATIONS; GROUND-STATES; BLOW-UP; STABILITY; SYMMETRY; EXISTENCE; CALCULUS;
D O I
10.1002/mma.10575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing various Pohozaev identities, we study the uniqueness of minimizers for L-2-subcritical inhomogeneous variational problems with spatially decaying nonlinear terms, which contains x = 0 as a singular point.
引用
收藏
页码:4757 / 4768
页数:12
相关论文
共 32 条
  • [1] Agrawal G, 2007, Nonlinear Fiber Optics, V5th
  • [2] Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation
    Ardila, Alex H.
    Van Duong Dinh
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [3] Ground-state properties of magnetically trapped Bose-condensed rubidium gas
    Baym, G
    Pethick, CJ
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (01) : 6 - 9
  • [4] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [5] Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations
    Cao, Daomin
    Li, Shuanglong
    Luo, Peng
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) : 4037 - 4063
  • [6] ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS
    CAZENAVE, T
    LIONS, PL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) : 549 - 561
  • [7] Cazenave T., 2003, Semilinear Schrdinger equations, Courant Lecture Notes in Mathematics, V10
  • [8] Combet V, 2016, J EVOL EQU, V16, P483, DOI 10.1007/s00028-015-0309-z
  • [9] Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities
    De Bouard, A
    Fukuizumi, R
    [J]. ANNALES HENRI POINCARE, 2005, 6 (06): : 1157 - 1177
  • [10] Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrodinger equations
    Deng, Yinbin
    Guo, Yujin
    Lu, Lu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)