Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens

被引:1
作者
Jones, Katerina [1 ]
de Brito, Camila Bernardo [1 ]
Byndloss, Mariana Xavier [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Pathol Microbiol & Immunol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Howard Hughes Med Inst, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Med Ctr, Vanderbilt Inst Infect Immunol & Inflammat, Nashville, TN 37232 USA
关键词
ARYL-HYDROCARBON RECEPTOR; CHAIN FATTY-ACIDS; GUT MICROBIOTA; COMMENSAL BACTERIA; ESCHERICHIA-COLI; HOST; SALMONELLA; IMMUNITY; INFECTION; EXPANSION;
D O I
10.1016/j.chembiol.2024.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 87 条
  • [1] Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J., Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection, Microbiol. Mol. Biol. Rev., 83, (2019)
  • [2] Sadowsky M.J., Staley C., Heiner C., Hall R., Kelly C.R., Brandt L., Khoruts A., Analysis of gut microbiota – An ever changing landscape, Gut Microb., 8, pp. 268-275, (2017)
  • [3] Chen H., Nwe P.-K., Yang Y., Rosen C.E., Bielecka A.A., Kuchroo M., Cline G.W., Kruse A.C., Ring A.M., Crawford J.M., Palm N.W., A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host Physiology, Cell, 177, pp. 1217-1231.e18, (2019)
  • [4] Ke S., Xiao Y., Weiss S.T., Chen X., Kelly C.P., Liu Y.-Y., A computational method to dissect colonization resistance of the gut microbiota against pathogens, Cell Rep. Methods, 3, (2023)
  • [5] Sorbara M.T., Pamer E.G., Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them, Mucosal Immunol., 12, pp. 1-9, (2019)
  • [6] Herrero-Fresno A., Olsen J.E., Salmonella Typhimurium metabolism affects virulence in the host – A mini-review, Food Microbiol., 71, pp. 98-110, (2018)
  • [7] Gupta U., Dey P., Rise of the guardians: Gut microbial maneuvers in bacterial infections, Life Sci., 330, (2023)
  • [8] Salmonella Homepage, (2023)
  • [9] Caballero-Flores G., Pickard J.M., Fukuda S., Inohara N., Nunez G., An Enteric Pathogen Subverts Colonization Resistance by Evading Competition for Amino Acids in the Gut, Cell Host Microbe, 28, pp. 526-533.e5, (2020)
  • [10] Nuse B., Holland T., Rauh M., Gerlach R.G., Mattner J., L-arginine metabolism as pivotal interface of mutual host–microbe interactions in the gut, Gut Microb., 15, (2023)