Lightweight and Dynamic Privacy-Preserving Federated Learning via Functional Encryption

被引:0
|
作者
Yu, Boan [1 ]
Zhao, Jun [2 ]
Zhang, Kai [1 ]
Gong, Junqing [2 ]
Qian, Haifeng [2 ]
机构
[1] Shanghai Univ Elect Power, Coll Comp Sci & Technol, Shanghai 201306, Peoples R China
[2] East China Normal Univ, Software Engn Inst, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Privacy; Encryption; Computational modeling; Iron; Vectors; Data models; Servers; Public key; Performance evaluation; Federated learning; privacy-preserving federated learning; functional encryption; multi-client functional encryption;
D O I
10.1109/TIFS.2025.3540312
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) is a distributed machine learning framework that allows multiple clients to collaboratively train an intermediate model with keeping data local, however, sensitive information may be still inferred during exchanging local models. Although homomorphic encryption and multi-party computation are applied into FL solutions to mitigate such privacy risks, they lead to costly communication overhead and long training time. As a result, functional encryption (FE) is introduced into the field of privacy-preserving FL (PPFL) for boosting efficiency and enhancing security. Nevertheless, existing FE-based PPFL frameworks that support dynamic participation either required a trusted third party that may lead to single-point failure, or require multiple rounds of interaction that inevitably incur large communication overhead. Therefore, we propose PrivLDFL, a lightweight and dynamic PPFL framework for resource-constrained devices. Technically, we formalize dynamic decentralized multi-client FE and give instantiations, then present efficiency optimizations via designing a vector compression funnel based on Chinese Remainder Theorem, and finally achieve client dropouts via a client partitioning strategy. Besides formal security analysis on PrivLDFL, we implement it and state-of-the-art solutions on Raspberry Pi to conduct extensive experiments, confirming the practical performance of PrivLDFL on best-known public datasets.
引用
收藏
页码:2496 / 2508
页数:13
相关论文
共 50 条
  • [31] NSPFL: A Novel Secure and Privacy-Preserving Federated Learning With Data Integrity Auditing
    Zhang, Zehu
    Li, Yanping
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 4494 - 4506
  • [32] Privacy-Preserving Incentive Mechanism Design for Federated Cloud-Edge Learning
    Liu, Tianyu
    Di, Boya
    An, Peng
    Song, Lingyang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2588 - 2600
  • [33] Privacy-Preserving Aggregation for Federated Learning-Based Navigation in Vehicular Fog
    Kong, Qinglei
    Yin, Feng
    Lu, Rongxing
    Li, Beibei
    Wang, Xiaohong
    Cui, Shuguang
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 8453 - 8463
  • [34] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [35] Towards Fair and Privacy-Preserving Federated Deep Models
    Lyu, Lingjuan
    Yu, Jiangshan
    Nandakumar, Karthik
    Li, Yitong
    Ma, Xingjun
    Jin, Jiong
    Yu, Han
    Ng, Kee Siong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (11) : 2524 - 2541
  • [36] Privacy-Preserving Federated Deep Learning With Irregular Users
    Xu, Guowen
    Li, Hongwei
    Zhang, Yun
    Xu, Shengmin
    Ning, Jianting
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (02) : 1364 - 1381
  • [37] Privacy-Preserving Federated Edge Learning: Modeling and Optimization
    Liu, Tianyu
    Di, Boya
    Song, Lingyang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1489 - 1493
  • [38] Efficient Privacy-Preserving Federated Learning With Unreliable Users
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Huang, Xiaoming
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11590 - 11603
  • [39] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [40] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523