Lightweight and Dynamic Privacy-Preserving Federated Learning via Functional Encryption

被引:2
作者
Yu, Boan [1 ]
Zhao, Jun [2 ]
Zhang, Kai [1 ]
Gong, Junqing [2 ]
Qian, Haifeng [2 ]
机构
[1] Shanghai Univ Elect Power, Coll Comp Sci & Technol, Shanghai 201306, Peoples R China
[2] East China Normal Univ, Software Engn Inst, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Privacy; Encryption; Computational modeling; Iron; Vectors; Data models; Servers; Public key; Performance evaluation; Federated learning; privacy-preserving federated learning; functional encryption; multi-client functional encryption;
D O I
10.1109/TIFS.2025.3540312
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) is a distributed machine learning framework that allows multiple clients to collaboratively train an intermediate model with keeping data local, however, sensitive information may be still inferred during exchanging local models. Although homomorphic encryption and multi-party computation are applied into FL solutions to mitigate such privacy risks, they lead to costly communication overhead and long training time. As a result, functional encryption (FE) is introduced into the field of privacy-preserving FL (PPFL) for boosting efficiency and enhancing security. Nevertheless, existing FE-based PPFL frameworks that support dynamic participation either required a trusted third party that may lead to single-point failure, or require multiple rounds of interaction that inevitably incur large communication overhead. Therefore, we propose PrivLDFL, a lightweight and dynamic PPFL framework for resource-constrained devices. Technically, we formalize dynamic decentralized multi-client FE and give instantiations, then present efficiency optimizations via designing a vector compression funnel based on Chinese Remainder Theorem, and finally achieve client dropouts via a client partitioning strategy. Besides formal security analysis on PrivLDFL, we implement it and state-of-the-art solutions on Raspberry Pi to conduct extensive experiments, confirming the practical performance of PrivLDFL on best-known public datasets.
引用
收藏
页码:2496 / 2508
页数:13
相关论文
共 40 条
[1]   Charm: a framework for rapidly prototyping cryptosystems [J].
Akinyele, Joseph A. ;
Garman, Christina ;
Miers, Ian ;
Pagano, Matthew W. ;
Rushanan, Michael ;
Green, Matthew ;
Rubin, Aviel D. .
JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2013, 3 (02) :111-128
[2]  
[Anonymous], The CIFAR-10 dataset
[3]  
[Anonymous], Medical mnist dataset
[4]  
[Anonymous], NSL KDD DATASET
[5]  
[Anonymous], CICIoV2024 Dataset
[6]   Practical Secure Aggregation for Privacy-Preserving Machine Learning [J].
Bonawitz, Keith ;
Ivanov, Vladimir ;
Kreuter, Ben ;
Marcedone, Antonio ;
McMahan, H. Brendan ;
Patel, Sarvar ;
Ramage, Daniel ;
Segal, Aaron ;
Seth, Karn .
CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, :1175-1191
[7]   Functional Encryption: A New Vision for Public-Key Cryptography [J].
Boneh, Dan ;
Sahai, Amit ;
Waters, Brent .
COMMUNICATIONS OF THE ACM, 2012, 55 (11) :56-64
[8]  
Boneh D, 2011, LECT NOTES COMPUT SC, V6597, P253, DOI 10.1007/978-3-642-19571-6_16
[9]   Privacy-Preserving Federated Learning via Functional Encryption, Revisited [J].
Chang, Yansong ;
Zhang, Kai ;
Gong, Junqing ;
Qian, Haifeng .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 :1855-1869
[10]  
Chen WL, 2021, Arxiv, DOI arXiv:2010.13723