Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat

被引:0
|
作者
Sun, Jing [1 ]
Dai, Wanqing [1 ]
Guo, Qiang [1 ]
Gao, Yaru [1 ]
Chen, Jiayu [1 ]
Chen, Jian Lin [1 ,2 ,3 ]
Mao, Guozhu [4 ]
Sun, Hongyan [5 ]
Peng, Yung-Kang [5 ]
机构
[1] Hong Kong Metropolitan Univ, Sch Sci & Technol, Dept Appl Sci, Homantin,Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, State Key Lab Marine Pollut, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
[5] City Univ Hong Kong, Hong Kong Special Adm Reg, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
关键词
Wearable sensor; Self-powered; Lactate detection; Real-time monitoring; Conductive hydrogel; BIOSENSOR;
D O I
10.1016/j.bios.2025.117303
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Sweat, a vital metabolic product in the human body, contains valuable biomarkers that reflect human conditions. Among these, lactate concentration serves as a significant indicator of human physiological states. In this study, we present an innovative self-powered wearable electrochemical sensor designed for real-time lactate detection in human sweat. This sensor utilizes a composite conductive hydrogel medium, showcasing its potential in monitoring and assessing human health. The sensor incorporates two key components: the lactate oxidase/ reduced graphene oxide/carbon cloth electrode (LOx/rGO/CCE) as the anode and the bilirubin oxidase/reduced graphene oxide/carbon cloth electrode (BOx/rGO/CCE) as the cathode. These electrodes are integrated into a substrate comprising a conductive hydrogel composed of Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and hydrophilic polyurethane (HPU). The sensor's performance was evaluated. The linear detection range spans from 10 nM to 50 mM, with an impressive detection limit of 4.38 nM, demonstrating its high sensitivity and selectivity towards lactate detection with long-term stability. Additionally, this sensor has been successfully applied to real-time monitor lactate concentration on athletes' skin by combining it with selfmade equipment and smartphones. The test results demonstrate minimal error compared to the results obtained from high-performance liquid chromatography. This technology opens up a valuable tool for monitoring and assessing human physiological conditions and new possibilities for advancements in health management, sports monitoring, and medical diagnostics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell
    Liu, Weifeng
    Yin, Lin
    Jin, Qi
    Zhu, Yimin
    Zhao, Jiao
    Zheng, Libiao
    Zhou, Zihao
    Zhu, Bin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 832 : 97 - 104
  • [22] A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat
    Mugo, Samuel M.
    Lu, Weihao
    Robertson, Scott
    BIOSENSORS-BASEL, 2022, 12 (10):
  • [23] Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation
    Kan, Yan
    Wang, Shuhan
    Meng, Jianying
    Guo, Yuanhao
    Li, Xiaoqiang
    Gao, Dekang
    MICROCHEMICAL JOURNAL, 2021, 168
  • [24] Wearable Electronics Based on the Gel Thermogalvanic Electrolyte for Self-Powered Human Health Monitoring
    Bai, Chenhui
    Wang, Zhaosu
    Yang, Shuai
    Cui, Xiaojing
    Li, Xuebiao
    Yin, Yifan
    Zhang, Min
    Wang, Tao
    Sang, Shengbo
    Zhang, Wendong
    Zhang, Hulin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 37306 - 37312
  • [25] Recent Advances in Hydrogel-Based Self-Powered Artificial Skins for Human-Machine Interfaces
    Wang, Yaling
    Zhu, Pengcheng
    Tan, Ming
    Niu, Mengjuan
    Liang, Siyang
    Mao, Yanchao
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (09)
  • [26] Self-Powered Wearable Displacement Sensor for Continuous Respiratory Monitoring and Human-Machine Synchronous Control
    Shi, Yan
    Li, Heran
    Yang, Liman
    Wang, Yixuan
    Sun, Zhibo
    Zhang, Chi
    Fu, Xianpeng
    Niu, Yanxia
    Han, Chengwei
    Xie, Fei
    SMALL METHODS, 2024,
  • [27] Streaming Current Based Microtubular Enzymatic Sensor for Self-Powered Detection of Urea
    Yu, Longteng
    Shi, Chen
    Xi, Wang
    Yeo, Joo Chuan
    Soon, Ren Hao
    Chen, Zhengkun
    Song, Peiyi
    Lim, Chwee Teck
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [28] Triboelectric nanogenerator based on well-dispersed and oxide-free liquid metal-doped conductive hydrogel as self-powered wearable sensor for respiratory and thyroid cartilage signal monitoring
    Yang, Qiannian
    Yu, Maolin
    Zhang, Hongyi
    Li, Na
    Du, Jingjing
    Xu, Lijian
    Xu, Jianxiong
    NANO ENERGY, 2025, 134
  • [29] Flexible self-Powered ammonia sensor based on Ce-ZnO composite film
    Wang, Si
    Tai, Huiling
    Xie, Guangzhong
    Su, Yuanjie
    Du, Xiaosong
    Jiang, Yadong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [30] High-sensitivity wearable multi-signal sensor based on self-powered MXene hydrogels
    Chen, Fengyue
    Deng, Huafang
    Li, Guoqing
    Li, Xin
    Pan, Jiazhi
    Liu, Tao
    Gong, Tao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489