Regular Global existence of strong solutions to the isentropic compressible nematic liquid crystal equations in a cuboid domain

被引:0
作者
Mahmood, Tariq [1 ,2 ,4 ]
Shang, Zhaoyang [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Finance, Shanghai 201209, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Liquid crystal equations; Small initial condition; Global strong solutions; DEPENDENT INCOMPRESSIBLE-FLOW; LOCAL WELL-POSEDNESS; CLASSICAL-SOLUTIONS; TEMPORAL DECAY; SYMMETRIC-SOLUTIONS; LARGE OSCILLATIONS; HYDRODYNAMIC FLOW; WEAK SOLUTIONS; CAUCHY-PROBLEM; VACUUM;
D O I
10.1016/j.jmaa.2024.128839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the initial-boundary value problem of three-dimensional compressible nematic liquid crystal equations in a cuboid domain. We prove that the strong solution exists globally in the time provided that both the initial L(1)norm of the density ||rho(0)|| L(1)and the initial L-3-norm of the gradient of orientation field ||Vd(0)|| L-3 for nematic liquid crystal flow are small enough. The main tools of proving the global well-posedness are some time-weighted a priori estimates designed for the compressible nematic liquid crystal equations.
引用
收藏
页数:35
相关论文
共 62 条
  • [1] Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals
    Bie, Qunyi
    Cui, Haibo
    Wang, Qiru
    Yao, Zheng-An
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [2] BREZIS H., 1980, Comm. Partial Diff. Equations, V5, P773
  • [3] STRONG SOLUTIONS TO THE COMPRESSIBLE LIQUID CRYSTAL SYSTEM
    Chu, Yu-Ming
    Liu, Xian-Gao
    Liu, Xiao
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) : 37 - 52
  • [4] Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum
    Ding, Shijin
    Huang, Jinrui
    Xia, Fengguang
    [J]. FILOMAT, 2013, 27 (07) : 1247 - 1257
  • [5] CONSERVATION LAWS FOR LIQUID CRYSTALS
    ERICKSEN, JL
    [J]. TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 : 23 - 34
  • [6] CONTINUUM THEORY OF LIQUID CRYSTALS OF NEMATIC TYPE
    ERICKSEN, JL
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1969, 7 : 153 - &
  • [7] Local Well-Posedness for the Compressible Nematic Liquid Crystals Flow with Vacuum
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    [J]. ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (04) : 497 - 509
  • [8] UNIFORM LOCAL WELL-POSEDNESS AND REGULARITY CRITERION FOR THE DENSITY-DEPENDENT INCOMPRESSIBLE FLOW OF LIQUID CRYSTALS
    Fan, Jishan
    Li, Fucai
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (07) : 1185 - 1197
  • [9] Global strong solution to the 2D density-dependent liquid crystal flows with vacuum
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 : 185 - 190
  • [10] ON THE THEORY OF LIQUID CRYSTALS
    FRANK, FC
    [J]. DISCUSSIONS OF THE FARADAY SOCIETY, 1958, (25): : 19 - 28