Unboundedness of foliated varieties

被引:0
作者
Lu, Xin [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Foliated variety; boundedness; family; EXPLICIT BIRATIONAL GEOMETRY; GENERAL TYPE; PLURICANONICAL SYSTEMS; 3-FOLDS; BOUNDEDNESS; DIMENSION; REDUCTION; MODELS;
D O I
10.1142/S0129167X2550003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer numbers n > r and m, we construct a complex foliated variety (X,& Fouriertrf;) of general type with dim X = n and rank & Fouriertrf; = r such that the pluricanonical system |mK(& Fouriertrf;)| does not give a birational map. This answers a question of Cascini.
引用
收藏
页数:9
相关论文
共 29 条
  • [1] Weak semistable reduction in characteristic 0
    Abramovich, D
    Karu, K
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (02) : 241 - 273
  • [2] Barth W., 1984, ERGEBNISSE MATH IHRE, V4
  • [3] Rational Curves on Foliated Varieties
    Bogomolov, Fedor
    McQuillan, Michael
    [J]. FOLIATION THEORY IN ALGEBRAIC GEOMETRY, 2016, : 21 - 51
  • [4] Bombieri E., 1972, I HAUTES ETUDES SCI, V42, P171, DOI 10.1007/BF02685880
  • [5] Brunella M., 2004, Birational Geometry of Foliations, Publicacoes Matematicas do IMPA
  • [6] Reduction of the singularities of codimension one singular foliations in dimension three
    Cano, F
    [J]. ANNALS OF MATHEMATICS, 2004, 160 (03) : 907 - 1011
  • [7] New directions in the Minimal Model Program
    Cascini, Paolo
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (01): : 179 - 190
  • [8] Chen J. A., 2018, Invited Lectures, VII, P653
  • [9] Explicit birational geometry of 3-folds and 4-folds of general type, III
    Chen, Jungkai A.
    Chen, Meng
    [J]. COMPOSITIO MATHEMATICA, 2015, 151 (06) : 1041 - 1082
  • [10] Chen JKA, 2010, J DIFFER GEOM, V86, P237