Adaptive Impedance Modulation-Based Control for Human-Robot Interaction

被引:0
作者
Du, Liang [1 ]
Lv, JiYu [2 ]
Qiu, Limin [2 ]
Chen, Shouyan [2 ]
机构
[1] Guangdong Ind Polytech Univ, Sch Mech & Elect Technol, Guangzhou, Peoples R China
[2] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, CIS AND IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, RAM, CIS-RAM 2024 | 2024年
关键词
human robot interaction; impedance control; adaptive learning algorithm;
D O I
10.1109/CIS-RAM61939.2024.10673074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Impedance control is commonly used to garantee the effciency and safety of physical human-robot interaction. Classic impedance control is not able to adaptivly modify impedance parameters according to dynamic enviroment. This paper used adaptive learning algorithm to modify parameters according human and enviroment variation. Model of robot and impedance control are established and corresponding experiments are conducted to verify the performancec of proposed approach. The simulation and experiment results indicated that the proposed approach can achieve a better convergence speed and robustness.
引用
收藏
页码:212 / 215
页数:4
相关论文
共 16 条
  • [1] Anand A, 2023, Robotics and Autonomous Systems, P170
  • [2] Dynamic Adaptive Hybrid Impedance Control for Dynamic Contact Force Tracking in Uncertain Environments
    Cao, Hongli
    Chen, Xiaoan
    He, Ye
    Zhao, Xue
    [J]. IEEE ACCESS, 2019, 7 : 83162 - 83174
  • [3] Event-Triggered Adaptive Neural Impedance Control of Robotic Systems
    Ding, Shuai
    Peng, Jinzhu
    Zhang, Hui
    Wang, Yaonan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14330 - 14340
  • [4] Duan J, 2018, Robotics Autonomous Systems, P10254
  • [5] Adaptive Fuzzy Finite-Time Command Filtered Impedance Control for Robotic Manipulators
    Lin, Gaorong
    Yu, Jinpeng
    Liu, Jiapeng
    [J]. IEEE ACCESS, 2021, 9 : 50917 - 50925
  • [6] Neural-Learning-Based Force Sensorless Admittance Control for Robots With Input Deadzone
    Peng, Guangzhu
    Chen, C. L. Philip
    He, Wei
    Yang, Chenguang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (06) : 5184 - 5196
  • [7] Position/Force Tracking Impedance Control for Robotic Systems with Uncertainties Based on Adaptive Jacobian and Neural Network
    Peng, Jinzhu
    Yang, Zeqi
    Ma, Tianlei
    [J]. COMPLEXITY, 2019, 2019
  • [8] Choosing Stiffness and Damping for Optimal Impedance Planning
    Pollayil, Mathew Jose
    Angelini, Franco
    Xin, Guiyang
    Mistry, Michael
    Vijayakumar, Sethu
    Bicchi, Antonio
    Garabini, Manolo
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (02) : 1281 - 1300
  • [9] Autonomy in Physical Human-Robot Interaction: A Brief Survey
    Selvaggio, Mario
    Cognetti, Marco
    Nikolaidis, Stefanos
    Ivaldi, Serena
    Siciliano, Bruno
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 7989 - 7996
  • [10] Impedance Variation and Learning Strategies in Human-Robot Interaction
    Sharifi, Mojtaba
    Zakerimanesh, Amir
    Mehr, Javad K.
    Torabi, Ali
    Mushahwar, Vivian K.
    Tavakoli, Mahdi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6462 - 6475