Terminal orders on arithmetic surfaces

被引:0
作者
Chan, Daniel [1 ]
Ingalls, Colin [2 ]
机构
[1] Univ New South Wales Sydney, Sch Math & Stat, Sydney, Australia
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
澳大利亚研究理事会;
关键词
orders; arithmetic surfaces; minimal model program;
D O I
10.2140/ant.2024.18.2027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local structure of terminal Brauer classes on arithmetic surfaces was classified (2021), generalising the classification on geometric surfaces (2005). Part of the interest in these classifications is that it enables the minimal model program to be applied to the noncommutative setting of orders on surfaces. We give etale local structure theorems for terminal orders on arithmetic surfaces, at least when the degree is a prime p > 5. This generalises the structure theorem given in the geometric case. They can all be explicitly constructed as algebras of matrices over symbols. From this description one sees that such terminal orders all have global dimension two, thus generalising the fact that terminal (commutative) surfaces are smooth and hence homologically regular.
引用
收藏
页码:2027 / 2046
页数:23
相关论文
共 15 条
[1]  
[Anonymous], 2013, Cambridge Tracts in Mathematics, DOI [10.1017/CBO9781139547895, DOI 10.1017/CBO9781139547895]
[2]   SOME ELEMENTARY EXAMPLES OF UNIRATIONAL VARIETIES WHICH ARE NOT RATIONAL [J].
ARTIN, M ;
MUMFORD, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1972, 25 (JUL) :75-&
[3]  
Artin M., 2004, PreprintS
[4]  
Auslander M., 1960, T AM MATH SOC, V97, P1
[5]   The minimal model program for orders over surfaces [J].
Chan, D ;
Ingalls, C .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :427-452
[6]  
Chan D., 2021, arXiv
[7]  
Chan K., 2010, Ph.D. thesis
[8]  
Gille P., 2006, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1017/CBO9780511607219
[9]   On the Kodaira dimension of maximal orders [J].
Grieve, Nathan ;
Ingalls, Colin .
ADVANCES IN MATHEMATICS, 2021, 392
[10]  
Lazarsfeld R., 2004, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse der Math, V48, P239